

EWK physics: Measurements and prospects from LHCb

Menglin Xu (Central China Normal University)

On behalf of the LHCb Collaboration

the 8th annual conference on Large Hadron Collider Physics May 25, 2020, Online

- □ Forward region: unique acceptance within the LHC experiments ($2 < \eta < 5$)
- □ Momentum resolution: 0.4% at 5GeV, 0.6% at 100 GeV
- **□** Muon ID efficiency: 97% with 1-3% $\mu \rightarrow \pi$ mis-identification
- □ Electron reconstruction: bremsstrahlung recovery and well-measured direction
- Excellent vertex reconstruction: tagging of b and c jets.

LHCb demonstrated its capability in EW and jet physics

□ LHCb:

- Unique **forward region** coverage, access new kinematic regions
- Offers a complementary phase space region with respect to ATLAS/CMS for electroweak measurements
- Provide access to PDF in two different regions:
 - $\checkmark \quad \text{At high x values;}$
 - ✓ At low x values, unexplored by other experiments.

W/Z + jet production at 8TeV <u>JHEP 05 (2016) 1-23</u>

 \square $W \rightarrow \mu \nu$ and $Z \rightarrow \mu \mu$ decay channels

G Fiducial region:

 $p_T(\mu) > 20$ GeV, 2.0 < $\eta(\mu) < 4.5$, $p_T(\text{jet}) > 20$ GeV, 2.2 < $\eta(\text{jet}) < 4.2$, $\Delta R(\text{jet}, \mu) > 0.5$

- **\Box** Fit to the muon isolation to extract the W + jet yield
- \square W/Z ratios and W^+/W^- asymmetry are also determined

Measurements are in good agreement with theory predictions

4

Z production at $\sqrt{s} = 13$ TeV <u>JHEP 09 (2016) 136</u>

- \square Lepton final states $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$, 294pb⁻¹
- **G** Fiducial region:

 $2.0 < \eta(\mu/e) < 4.5, p_T(\mu/e) > 20 \text{GeV}, 60 < M(\mu\mu/ee) < 120 \text{GeV}$

- **□** High purity samples: 99.2% for $Z \rightarrow \mu\mu$ and 92.2% for $Z \rightarrow ee$
- \square Z $\rightarrow \mu\mu$ and Z $\rightarrow ee$ measured cross-section are compatible within the uncertainties
 - $\sigma_Z^{\mu\mu} = 198.0 \pm 0.9(\text{stat}) \pm 4.7(\text{sys}) \pm 7.7(\text{lumi}) \text{ pb}$
 - $\sigma_Z^{ee} = 190.2 \pm 1.7(\text{stat}) \pm 4.7(\text{sys}) \pm 7.4(\text{lumi}) \text{ pb}$
 - $\sigma_Z^{ll} = 194.3 \pm 0.9(\text{stat}) \pm 3.3(\text{sys}) \pm 7.6(\text{lumi}) \text{ pb}$

LHCb, $\sqrt{s} = 13 \text{ TeV}$

W $\rightarrow e\nu$ production at 8TeV <u>JHEP 10 (2016) 030</u>

- Important measurement to validate the high $p_T e$ reconstruction and identification at LHCb
- Fiducial region: $p_T(e) > 20$ GeV, $2.0 < \eta < 4.25$
- Fit to the electron p_T distribution to extract the W yield
 Differential cross section as a function of the electron η is compatible with the prediction

Forward $Z \rightarrow \tau^- \tau^+$ production at $\sqrt{s} = 8T eV_{\underline{JHEP} 09 (2018) 159}$

Forward $Z \rightarrow \tau^- \tau^+$ production at $\sqrt{s} = 8 \text{TeV}_{\underline{\text{JHEP 09 (2018) 159}}}$

□ Combined cross sections from all channel via BLUE(best linear unbiased estimator), taken in to account uncertainties correlation:

$$\begin{split} \sigma_{pp \to Z \to \tau^+ \tau^-} &= 95.8 \pm 2.1 \pm 4.6 \pm 0.2 \pm 1.1 \text{pb} \\ (2.0 < \eta < 4.5, p_T > 20 \text{GeV}) \end{split}$$

Lepton universality:

•
$$\frac{\sigma_{pp \to Z \to \tau^+ \tau^-}^{\text{sTeV}}}{\sigma_{pp \to Z \to \mu^+ \mu^-}^{\text{sTeV}}} = 1.01 \pm 0.05$$

•
$$\frac{\sigma_{pp \to Z \to \tau^+ \tau^-}^{\text{sTeV}}}{\sigma_{pp \to Z \to e^+ e^-}^{\text{sTeV}}} = 1.02 \pm 0.06$$

Weak mixing angular measurement – why LHCb

- □ Key parameter in Electroweak sector of the Standard Model
- □ LHCb has the potential to make the most sensitive measurement of the weak mixing angle at the LHC
 - Forward-backward asymmetry increases (and sensitivity to Weinberg angle increases) as rapidity of Z boson increases
 - The dilution effect (the possibility of wrong direction determination) decreases in high y

Weak mixing angular measurement – LHCb future

- With sufficient control of other sources of uncertainty, a measurement at LHCb using the full dataset (300 fb⁻¹), can be significantly more precise that the combination of measurements at LEP and SLD (5×10^{-6})
 - Statistics uncertainty: is expected to be roughly 5×10^{-5}
 - Systematic uncertainty: all of them are statistic limited in Run-I result, with the increase the statistics, it is expected to be decreased
 - PDF uncertainty: can be reduced to below 10×10^{-5} using the reweighting technique

LHC Yellow Report [CERN-LPCC-2018-03]

10

- **D** Run-II analysis is in process
 - Weak mixing angle measurement
 - Full angular distribution of Z boson decays contains more information than forward-backward asymmetry
 - Z angular coefficient measurement(A_i)
- An additional alignment performed offline
 - A 35% improvement in the mass resolution is observed
 - Have a better understanding of the detector

W mass measurement

■ Motivation:

- Electroweak fit predicts m(W) with 7 MeV uncertainty, the best experiment uncertainties ~20MeV
- The $p_T(\mu)$ distribution is strongly influenced by QCD, the details of which have long been considered a source of irreducible uncertainties in measurements by ATLAS and CMS alone
- □ Why LHCb?
 - LHCb Run-II data permit ~10 MeV statistical precision
 - Parton distribution function uncertainty would partially cancel in an average of LHCb with ATLAS+CMS
 - PDF uncertainties can be tightly constrained with a fit to the double differential distribution in p_T and η
 - Possible to simultaneously constrain the W p_T shape and fit the W mass, to mitigate the QCD uncertainties

- □ LHCb performed measurements of EW in the forward region of pp collisions, unexplored by other experiments
- □ Provide unique tests of the Standard Model and constraints to the PDFs
- □ A lot of works are in progress for new exciting measurements!