Mixed QCD×EW corrections for Drell-Yan processes

Federico Buccioni
Rudolf Peierls Centre for Theoretical Physics
University of Oxford

LHC Physics Conference 2020
Outline

Mixed QCD\timesEW corrections for Drell-Yan processes
 complexities and approximations

Mixed QCD\timesEW corrections in the resonance region: the Z case
 motivations and simplifications
 recent progress: inclusive cross section and differential distributions

Conclusions and outlook

for motivations see A. Vicini's talk
Mixed QCDxEW to Drell-Yan processes: why it is hard

The complete calculation of the mixed QCDxEW corrections for a fully off-shell dilepton system involve several technical complexities:

Amplitudes/Integrals

Two-loop integrals involving several energy scales

Scattering amplitudes not available yet

Recent developments:
[Bonciani, Di Vita, Mastrolia, Schubert 1604.08581] [Heller, von Manteuffel, Schabinger 1907.00491] [Mehedi Hasan, Schubert 2004.14908]

Subtraction of IR singularities

Complex infrared structure of the amplitude

Recent developments:
[Delto, Jaquier, Melnikov, Röntsch 1909.08428] [Cieri, De Florian, Der, Mazzitelli 2005.01315] [Buonocore, Grazzini, Tramontano 1911.10166]

Fully off-shell NNLO QCDxQED for $Z \rightarrow \nu \bar{\nu}$

Fully off-shell case with charged leptons not available yet
Available approximations to full NNLO QCDxEW: PS

NLOEW and QED multiple photon corrections within native NLO and QCD Parton Shower in POWHEG BOX [Balossini et al. 0907.0276, Barze' et al. 1302.4606]

NLO QCD and EW + PS included into a single generator. Made available both for NCDY (Z) and CCDY (W)

Detailed phenomenological study indicate that impact of mixed QCDxEW correction on W mass extraction

\[\Delta M_W \sim -16 \text{ MeV} \]

Red vs Green: impact of mixed corrections: up to several %

Combination of NLO QCD x NLO EW + PS (QCD & QED) vs NLO QCD+PS
Drell-Yan at the resonance region: can we simplify it?

Resonance region relevant for EW precision studies at the LHC.

Moreover: remarkable technical simplification wrt fully off-shell case. One can work in the narrow width approximation [Fadin, Khoze, Martin hep-ph/9309234]

$$\sigma = \text{prod} \times \text{dec} + \mathcal{O}\left(\frac{\Gamma}{M}\right)$$

The pole approximation [Stuart '91] well suited for describing (mixed qcd-) electroweak effects near the resonance region

![Resonance Diagram]

IS-FS non-factorizable contributions subdominant in the resonance region. Phenomenologically negligible

Dominant effects from IS-FS factorizable contributions. Authors consider initial-final and final-final.

Comparison of IS-FS correction with NLO QCD (IS) x QED PS (FS).

Generally good agreement

(one of the) Outcome of the study:
Mixed QCDxEW corrections can have an impact as **14 MeV** in the extraction of the W mass.
Drell-Yan at the resonance region: can we simplify it?

Resonance region relevant for EW precision studies at the LHC.
Moreover: remarkable technical simplification wrt fully off-shell case. One can work in the narrow width approximation

\[\sigma = \text{prod} \times \text{dec} + \mathcal{O}\left(\frac{\Gamma}{M}\right) \]

The pole approximation [Stuart '91] well suited for describing (mixed qcd-) electroweak effects near the resonance region.

IS-FS non-factorizable contributions subdominant in the resonance region. Phenomenologically negligible.

Comparison of IS-FS correction with NLO QCD (IS) \times QED PS (FS).
Generally good agreement

(last of the) Outcome of the study: Mixed QCD\times EW corrections can have an impact as 14 MeV in the extraction of the W mass.

Authors consider initial-final and final-final.
Complete QCDxEW corrections to on-shell Z: fully inclusive XS

NNLO QCDxQED corrections to inclusive Z obtained through "abelianisation" [De Florian, Der, Fabre 1805.12214] of NNLO QCD [Hamberg, Matsuura, van Neerven '90]

NNLO QCDxEW corrections to inclusive Z production: $q\bar{q} \rightarrow Z$ channel [Bonciani, F.B, Rana, Triscari, Vicini 1911.06200]

Fully analytic computation of the amplitudes and of the required loop and phase-space integrals. Important benchmark for Monte Carlo calculations

QCDxEW renormalization [Djoaudi, Gambino hep-ph/9309298] + mass factorization [De Florian, Rodrigo, Sborlini 1512.00612]

$$\alpha_s \alpha_s \sigma^{(1,1)}_{q\bar{q}} = \sigma^{(0)}_{q\bar{q}} \left(\Delta^{(1,1)}_{q\bar{q},\gamma} + \Delta^{(1,1)}_{q\bar{q},Z} + \Delta^{(1,1)}_{q\bar{q},W} \right)$$

Purely weak contribution are large wrt to pure QED effects already at the partonic level

For a realistic assessment of impact of QCDxEW corrections and investigation of theory uncertainty fully hadronic XS is needed.
Complete QCDxEW corrections to on-shell Z: fully inclusive XS

NNLO QCDxQED corrections to inclusive Z obtained through "abelianisation" [De Florian, Der, Fabre 1805.12214] of NNLO QCD [Hamberg, Matsuura, van Neerven '90]

NNLO QCDxEW corrections to inclusive Z production: $q\bar{q} \rightarrow Z$ channel [Bonciani, F.B, Rana, Triscari, Vicini 1911.06200]

Fully analytic computation of the amplitudes and of the required loop and phase-space integrals. Important benchmark for Monte Carlo calculations

![Diagram](image)

QCDxEW renormalization [Djoaudi, Gambino hep-ph/9309298] + mass factorization [De Florian, Rodrigo, Sborlini 1512.00612]

$$\alpha_s \alpha \sigma^{(1,1)}_{q\bar{q}} = \sigma^{(0)}_{q\bar{q}} \left(\Delta^{(1,1)}_{q\bar{q},\gamma} + \Delta^{(1,1)}_{q\bar{q},Z} + \Delta^{(1,1)}_{q\bar{q},W} \right)$$

Purely weak contribution are large wrt to pure QED effects already at the partonic level

For a realistic assessment of impact of QCDxEW corrections and investigation of theory uncertainty fully hadronic XS is needed.

Coming soon! (stay tuned)
Mixed QCDxEW to on-shell Z production: going differential

Complete calculation of mixed QCDxEW corrections to on-shell Z boson production at the LHC

\[\frac{d\sigma_{pp\to e^+e^-}}{d\Gamma_{Z\to e^+e^-}} = \text{Br}(Z\to e^+e^-) \frac{d\sigma_{pp\to Z}}{d\Gamma_{Z\to e^+e^-}} \]

In perturbation theory

\[d\sigma = \sum_{i,j} \frac{\alpha_s^i}{2\pi} \frac{\alpha_s^j}{2\pi} \delta\sigma^{(i,j)} = \sum_{i,j} d\sigma^{(i,j)} \]

Main aspects of the calculation:

- Independent calculation of \textbf{2-loop form factors}: agreement with results available from the literature [Kotikov, Kuhn, Veretin hep-ph/0703013]

- One-loop \textbf{real-virtual integrals} from OpenLoops2 [F.B., Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller 1907.13071]
 It guarantees numerical stability in unresolved IR regions.

- \textbf{QCDxEW renormalization} [Djoaudi, Gambino hep-ph/9309298]

- \textbf{Subtraction of IR singularities} performed within the nested soft collinear subtraction formalism [Caola, Melnikov, Röntsch 1702.01352]
 adapted to QCDxQED corrections [Delto, Jaquier, Melnikov, Röntsch 1909.08428]
Corrections to the integrated cross sections

Electroweak corrections can be further split as

\[d\sigma^{(i,1)} = d\sigma_{\text{QED}}^{(i,1)} + d\sigma_{\text{weak}}^{(i,1)} \]

We present results for:
- 13 TeV LHC
- \(G_{\mu} \) scheme: \((G_{\mu}, M_W, M_Z)\) as input
- \(\mu_F = \mu_R = M_Z/2 \)

Standard selection criteria (cuts):
- \(p_{T,j_1} > 24 \) GeV (harder lepton)
- \(p_{T,j_2} > 16 \) GeV (softer lepton)
- \(-2.4 < y_l < 2.4\)
- \(m_{ll} > 50 \) GeV
- e-\(\gamma \) recombination for \(R_{e\gamma} < 0.1 \)

\[R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2} \]

<table>
<thead>
<tr>
<th>(\Delta)</th>
<th>Inclusive</th>
<th>Cuts</th>
<th>Cuts (production)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{\text{QED}}^{(1,1)})</td>
<td>+2.3 \times 10^{-3}</td>
<td>-5.3 \times 10^{-3}</td>
<td>+2.2 \times 10^{-3}</td>
</tr>
<tr>
<td>(\Delta_{\text{weak}}^{(1,1)})</td>
<td>-5.5 \times 10^{-3}</td>
<td>-5.0 \times 10^{-3}</td>
<td>-5.0 \times 10^{-3}</td>
</tr>
<tr>
<td>(\Delta_{\text{QED}}^{(0,1)})</td>
<td>-3.2 \times 10^{-3}</td>
<td>-1.0 \times 10^{-2}</td>
<td>-2.8 \times 10^{-3}</td>
</tr>
<tr>
<td>(\Delta^{(2,0)})</td>
<td>+1.3 \times 10^{-2}</td>
<td>+5.8 \times 10^{-3}</td>
<td>+5.8 \times 10^{-3}</td>
</tr>
<tr>
<td>(\Delta_{\text{QED}}^{(1,1)})</td>
<td>+5.5 \times 10^{-4}</td>
<td>-5.9 \times 10^{-3}</td>
<td>+1.4 \times 10^{-4}</td>
</tr>
<tr>
<td>(\Delta_{\text{weak}}^{(1,1)})</td>
<td>-1.6 \times 10^{-3}</td>
<td>-2.1 \times 10^{-3}</td>
<td>-2.1 \times 10^{-3}</td>
</tr>
<tr>
<td>(\Delta^{(1,1)})</td>
<td>-1.1 \times 10^{-3}</td>
<td>-8.0 \times 10^{-3}</td>
<td>-2.0 \times 10^{-3}</td>
</tr>
</tbody>
</table>

Ratio to NLO QCD

\[d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}} \]

the Z-\(e^+e^- \) branching ratio drops in the ratio

bin-by-bin in differential distributions
Corrections to the integrated cross sections

Electroweak corrections can be further split as

\[d\sigma^{(i,1)} = d\sigma_{\text{QED}}^{(i,1)} + d\sigma_{\text{weak}}^{(i,1)} \]

Ratio to NLO QCD

\[\frac{d\Delta^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}} \]

We present results for:
- 13 TeV LHC
- \(G_\mu \) scheme: \((G_\mu, M_W, M_Z) \) as input
- \(\mu_F = \mu_R = M_Z/2 \)

Standard selection criteria (cuts):
- \(p_{T,1} > 24 \text{ GeV} \) (harder lepton)
- \(p_{T,2} > 16 \text{ GeV} \) (softer lepton)
- \(-2.4 < y_l < 2.4 \)
- \(m_{ll} > 50 \text{ GeV} \)
- \(e-\gamma \) recombination for \(R_{e\gamma} < 0.1 \)

\[R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2} \]

<table>
<thead>
<tr>
<th>(\Delta_{\text{QED}}^{(0,1)})</th>
<th>Inclusive</th>
<th>Cuts</th>
<th>Cuts (production)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2.3 x 10^{-3}</td>
<td>-5.3 x 10^{-3}</td>
<td>+2.2 x 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>-5.5 x 10^{-3}</td>
<td>-5.0 x 10^{-3}</td>
<td>-5.0 x 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>-3.2 x 10^{-3}</td>
<td>-1.0 x 10^{-2}</td>
<td>-2.8 x 10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

\(\Delta^{(2,0)} \)

| +1.3 x 10^{-2} | +5.8 x 10^{-3} | +5.8 x 10^{-3} |

\(\Delta_{\text{QED}}^{(1,1)} \)

| +5.5 x 10^{-4} | -5.9 x 10^{-3} | +1.4 x 10^{-4} |

\(\Delta_{\text{weak}}^{(1,1)} \)

| -1.6 x 10^{-3} | -2.1 x 10^{-3} | -2.1 x 10^{-3} |

\(\Delta^{(1,1)} \)

| -1.1 x 10^{-3} | -8.0 x 10^{-3} | -2.0 x 10^{-3} |

The Z \to e^+e^- branching ratio drops in the ratio

\[\text{Tiny EW corrections due to } G_\mu \text{ scheme} \]
Corrections to the integrated cross sections

Electroweak corrections can be further split as

\[d\sigma^{(i,1)} = d\sigma_{\text{QED}}^{(i,1)} + d\sigma_{\text{weak}}^{(i,1)} \]

bin-by-bin in differential distributions

\[d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}} \]

the Z → e⁺e⁻ branching ratio drops in the ratio

We present results for:

- 13 TeV LHC
- \(G_\mu \) scheme: \((G_\mu, M_W, M_Z) \) as input
- \(\mu_F = \mu_R = M_Z/2 \)

Standard selection criteria (cuts):

- \(p_{T,1} > 24 \text{ GeV} \) (harder lepton)
- \(p_{T,2} > 16 \text{ GeV} \) (softer lepton)
- \(-2.4 < y_l < 2.4 \)
- \(m_{ll} > 50 \text{ GeV} \)
- e-\(\gamma \) recombination for \(R_{e\gamma} < 0.1 \)

\[R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2} \]

We present results for:

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
 & Inclusive & Cuts & Cuts (production) \\
\hline \(\Delta^{(0,1)}_{\text{QED}} \) & +2.3 \times 10^{-3} & -5.3 \times 10^{-3} & +2.2 \times 10^{-3} \\
(\mu) & & & \\
\hline \(\Delta^{(0,1)}_{\text{weak}} \) & -5.5 \times 10^{-3} & -5.0 \times 10^{-3} & -5.0 \times 10^{-3} \\
F = R = M_Z/2 & & & \\
\hline \(\Delta^{(0,1)} \) & -3.2 \times 10^{-3} & -1.0 \times 10^{-2} & -2.8 \times 10^{-3} \\
\hline \(\Delta^{(2,0)} \) & +1.3 \times 10^{-2} & +5.8 \times 10^{-3} & +5.8 \times 10^{-3} \\
\hline \(\Delta^{(1,1)}_{\text{QED}} \) & +5.5 \times 10^{-4} & -5.9 \times 10^{-3} & +1.4 \times 10^{-4} \\
(\text{QCDx})QED & & & \\
\hline \(\Delta^{(1,1)}_{\text{weak}} \) & -1.6 \times 10^{-3} & -2.1 \times 10^{-3} & -2.1 \times 10^{-3} \\
& & & \\
\hline \(\Delta^{(1,1)} \) & -1.1 \times 10^{-3} & -8.0 \times 10^{-3} & -2.0 \times 10^{-3} \\
& & & \\
\hline
\end{tabular}
\end{center}

(QCDx)QED corrections strongly sensitive to selection cuts
Corrections to the integrated cross sections

Electroweak corrections can be further split as
\[d\sigma^{(i,1)} = d\sigma_{\text{QED}}^{(i,1)} + d\sigma_{\text{weak}}^{(i,1)} \]

\[d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}} \]

bin-by-bin in differential distributions

The Z → e⁺e⁻ branching ratio drops in the ratio

We present results for:
- 13 TeV LHC
- \(G_\mu \) scheme: \((G_\mu, M_W, M_Z) \) as input
- \(\mu_F = \mu_R = M_Z/2 \)

Standard selection criteria (cuts):
- \(p_{T1} > 24 \text{ GeV} \) (harder lepton)
- \(p_{T2} > 16 \text{ GeV} \) (softer lepton)
- \(-2.4 < y_1 < 2.4\)
- \(m_{ll} > 50 \text{ GeV} \)
- e-\(\gamma \) recombination for \(R_{e\gamma} < 0.1 \)

\[R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2} \]

<table>
<thead>
<tr>
<th>(\Delta^{(0,1)}_{\text{QED}})</th>
<th>Inclusive</th>
<th>Cuts</th>
<th>Cuts (production)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+2.3 \times 10^{-3})</td>
<td>(-5.3 \times 10^{-3})</td>
<td>(+2.2 \times 10^{-3})</td>
<td></td>
</tr>
<tr>
<td>(-5.5 \times 10^{-3})</td>
<td>(-5.0 \times 10^{-3})</td>
<td>(-5.0 \times 10^{-3})</td>
<td></td>
</tr>
<tr>
<td>(-3.2 \times 10^{-3})</td>
<td>(-1.0 \times 10^{-2})</td>
<td>(-2.8 \times 10^{-3})</td>
<td></td>
</tr>
<tr>
<td>(+1.3 \times 10^{-2})</td>
<td>(+5.8 \times 10^{-3})</td>
<td>(+5.8 \times 10^{-3})</td>
<td></td>
</tr>
</tbody>
</table>

NNLO QCD unnaturally (and accidentally) small. QCDxEW compete (eventually larger)
Corrections to the integrated cross sections

Electroweak corrections can be further split as \(d\sigma^{(i,1)} = d\sigma_{\text{QED}}^{(i,1)} + d\sigma_{\text{weak}}^{(i,1)} \)

Ratio to NLO QCD

\[
d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}}
\]

We present results for:
- 13 TeV LHC
- \(G_\mu \) scheme: \((G_\mu, M_W, M_Z)\) as input
- \(\mu_F = \mu_R = M_Z/2 \)

Standard selection criteria (cuts):
- \(p_{T,1} > 24 \text{ GeV} \) (harder lepton)
- \(p_{T,2} > 16 \text{ GeV} \) (softer lepton)
- \(-2.4 < y_l < 2.4 \)
- \(m_{ll} > 50 \text{ GeV} \)
- e-\(\gamma \) recombination for \(R_{e\gamma} < 0.1 \)

\[
R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2}
\]

<table>
<thead>
<tr>
<th>(\Delta)</th>
<th>Inclusive</th>
<th>Cuts</th>
<th>Cuts (production)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{\text{QED}}^{(0,1)})</td>
<td>+2.3 x 10^{-3}</td>
<td>-5.3 x 10^{-3}</td>
<td>+2.2 x 10^{-3}</td>
</tr>
<tr>
<td>(\Delta_{\text{weak}}^{(0,1)})</td>
<td>-5.5 x 10^{-3}</td>
<td>-5.0 x 10^{-3}</td>
<td>-5.0 x 10^{-3}</td>
</tr>
<tr>
<td>(\Delta^{(0,1)})</td>
<td>-3.2 x 10^{-3}</td>
<td>-1.0 x 10^{-2}</td>
<td>-2.8 x 10^{-3}</td>
</tr>
<tr>
<td>(\Delta^{(2,0)})</td>
<td>+1.3 x 10^{-2}</td>
<td>+5.8 x 10^{-3}</td>
<td>+5.8 x 10^{-3}</td>
</tr>
<tr>
<td>(\Delta_{\text{QED}}^{(1,1)})</td>
<td>+5.5 x 10^{-4}</td>
<td>-5.9 x 10^{-3}</td>
<td>+1.4 x 10^{-4}</td>
</tr>
<tr>
<td>(\Delta_{\text{weak}}^{(1,1)})</td>
<td>-1.6 x 10^{-3}</td>
<td>-2.1 x 10^{-3}</td>
<td>-2.1 x 10^{-3}</td>
</tr>
<tr>
<td>(\Delta^{(1,1)})</td>
<td>-1.1 x 10^{-3}</td>
<td>-8.0 x 10^{-3}</td>
<td>-2.0 x 10^{-3}</td>
</tr>
</tbody>
</table>

Production process.

It removes (strong) dependence on lepton cuts:

- weak corrections dominant over QED
Differential distributions

The impact of mixed QCDxEW, as well as the QED-Weak interplay is observable dependent in certain kinematic regions. QCDxWeak corrections dominate over QCDxQED in the production mechanism.

- In certain kinematic regions, QCDxEW effects comparable to NNLO QCD ones, e.g. central y_{ll} and low $p_{T,\ell}$

- The impact of mixed QCDxEW, as well as the QED-Weak interplay is observable dependent

As for the integrated XS:
Differential distributions

The impact of mixed QCD x EW, as well as the QED-Weak interplay is observable dependent in certain kinematic regions. QCD x EW effects comparable to NNLO QCD ones, e.g., central y_{ll} and low $p_{T, ll}$.

As for the integrated XS:

- QCD x Weak corrections dominate over QCD x QED in the production mechanism.
- In certain kinematic regions, QCD x EW effects comparable to NNLO QCD ones, e.g., central y_{ll} and low $p_{T, ll}$.
- The impact of mixed QCD x EW, as well as the QED-Weak interplay is observable dependent.

Both EW and QED effects must be considered for the required $O(\alpha_s)$ accuracy.
Differential distributions

Collins-Soper angle θ^*

$$\cos \theta^* = \text{sgn}(p_{z,ii}) \frac{P_{i+}^+ P_{i-}^- - P_{i-}^- P_{i+}^+}{\sqrt{m_{ii}^2 + p_{\perp,ii}^2}}$$

$\cos \theta^*$ allows for a precise determination of the weak mixing angle at the LHC

- for $\cos \theta^*$ QED and weak effects have a similar impact even when fs corrections are included
- LO kinematic boundary $p_{T,ii} < M_Z/2$. Effects more pronounced when FS QED corrections are included. Sensitivity to selection cuts
Comparison against factorised approximation

Exact: \(d\sigma = d\sigma^{LO} \left(1 + \delta_{QCD} + \delta_{EW} + \delta_{QCD \times EW} \right) \)
\(\delta_{QCD} \sim \text{NLO+NNLO QCD} \)

Multiplicative approximation:
\(d\sigma = d\sigma^{LO} \left(1 + \delta_{QCD} \right) \left(1 + \delta_{EW} \right) \)
\(\delta_{QCD} \times \delta_{EW} \)
widely adopted method to estimate missing mixed QCDxEW effects.

NB: \(\delta \) defined wrt LO

At the integrated cross section level:

<table>
<thead>
<tr>
<th>(\delta_{QCD} \times \delta_{EW})</th>
<th>(\delta_{QCD \times EW})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive</td>
<td>-1.17 (\times 10^{-3})</td>
</tr>
<tr>
<td>Cuts</td>
<td>-0.51 (\times 10^{-2})</td>
</tr>
<tr>
<td>(production)</td>
<td>-1.38 (\times 10^{-3})</td>
</tr>
</tbody>
</table>

Similar studies in [Dittmaier, Huss, Schwinn. 1511.08016]
Conclusions and outlook

The Drell-Yan process is a paradigm of precision physics at hadron colliders

For the required level of accuracy and for the upcoming HL-LHC phase, NNLO QCDxEW corrections need to be taken into account.

This is an active and lively topic of research and we are witnessing fast and constant progress from the side of theoretical calculations.

Mixed QCDxEW corrections to Z production at the resonance:

- mixed QCDxEW corrections are generally small: $O(10^{-3})$, however...
- significant interplay between QCDxQED and QCDxWeak
- effects vary with the observable of interest and depend strongly on the selection cuts
- proper assessment of the reduction of theory uncertainty needs a complete N3LO QCD calculation

Complete QCDxEW corrections at the W resonance:

- W boson mass extraction from LHC data with target accuracy of $O(10 \text{ MeV})$. Mixed corrections need to be taken into account.

Outlook:

- Mixed QCDxEW corrections away from the resonance
 - Crucial for studies in high-invariant mass regions
 - Assessment of validity of most used approximations
 - Many interesting formal aspects of perturbative calculations
Corrections to the integrated cross sections. $\mu_F = \mu_R = M_Z$

$$d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}}$$

13 TeV LHC
G_μ scheme: (G_μ, M_W, M_Z) as input
$\mu_F = \mu_R = M_Z$
$p_{T,l_1} > 24$ GeV (harder lepton)
$p_{T,l_2} > 16$ GeV (softer lepton)
$-2.4 < y_l < 2.4$
$m_h > 50$ GeV
e-γ recombination for $R_{\gamma} < 0.1$

Ratio to NLO QCD

$\mu_F = \mu_R = M_Z/2$

<table>
<thead>
<tr>
<th></th>
<th>Inclusive</th>
<th>Cuts</th>
<th>Cuts (production)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta^{(0,1)}_{QED}$</td>
<td>$+2.3 \times 10^{-3}$</td>
<td>-5.3×10^{-3}</td>
<td>$+2.2 \times 10^{-3}$</td>
</tr>
<tr>
<td>$\Delta^{(0,1)}_{\text{weak}}$</td>
<td>-5.5×10^{-3}</td>
<td>-5.0×10^{-3}</td>
<td>-5.0×10^{-3}</td>
</tr>
<tr>
<td>$\Delta^{(0,1)}$</td>
<td>-3.2×10^{-3}</td>
<td>-1.0×10^{-2}</td>
<td>-2.8×10^{-3}</td>
</tr>
<tr>
<td>$\Delta^{(2,0)}$</td>
<td>$+1.3 \times 10^{-2}$</td>
<td>$+5.8 \times 10^{-3}$</td>
<td>$+5.8 \times 10^{-3}$</td>
</tr>
<tr>
<td>$\Delta^{(1,1)}_{QED}$</td>
<td>$+5.5 \times 10^{-4}$</td>
<td>-5.9×10^{-3}</td>
<td>$+1.4 \times 10^{-4}$</td>
</tr>
<tr>
<td>$\Delta^{(1,1)}_{\text{weak}}$</td>
<td>-1.6×10^{-3}</td>
<td>-2.1×10^{-3}</td>
<td>-2.1×10^{-3}</td>
</tr>
<tr>
<td>$\Delta^{(1,1)}$</td>
<td>-1.1×10^{-3}</td>
<td>-8.0×10^{-3}</td>
<td>-2.0×10^{-3}</td>
</tr>
</tbody>
</table>

$\mu_F = \mu_R = M_Z$

<table>
<thead>
<tr>
<th></th>
<th>Inclusive</th>
<th>Cuts</th>
<th>Cuts (production)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta^{(0,1)}_{QED}$</td>
<td>$+3.1 \times 10^{-3}$</td>
<td>-5.5×10^{-3}</td>
<td>$+3.0 \times 10^{-3}$</td>
</tr>
<tr>
<td>$\Delta^{(0,1)}_{\text{weak}}$</td>
<td>-6.2×10^{-3}</td>
<td>-5.8×10^{-3}</td>
<td>-5.8×10^{-3}</td>
</tr>
<tr>
<td>$\Delta^{(0,1)}$</td>
<td>-3.1×10^{-3}</td>
<td>-1.1×10^{-2}</td>
<td>-2.9×10^{-3}</td>
</tr>
<tr>
<td>$\Delta^{(2,0)}$</td>
<td>-6.3×10^{-3}</td>
<td>-1.2×10^{-2}</td>
<td>-1.2×10^{-2}</td>
</tr>
<tr>
<td>$\Delta^{(1,1)}_{QED}$</td>
<td>$+2.9 \times 10^{-4}$</td>
<td>-5.2×10^{-3}</td>
<td>-1.5×10^{-4}</td>
</tr>
<tr>
<td>$\Delta^{(1,1)}_{\text{weak}}$</td>
<td>-9.2×10^{-4}</td>
<td>-1.3×10^{-3}</td>
<td>-1.3×10^{-3}</td>
</tr>
<tr>
<td>$\Delta^{(1,1)}$</td>
<td>-6.4×10^{-4}</td>
<td>-6.5×10^{-3}</td>
<td>-1.5×10^{-3}</td>
</tr>
</tbody>
</table>
On-shell Z production in the narrow-width approximation

The production of a Z boson is computed in the narrow width approximation

\[
d\sigma_{pp \to e^+e^-} = Br\left(Z \to e^+e^-\right) \cdot d\sigma_{pp \to Z} \cdot \frac{d\Gamma_{Z \to e^+e^-}}{\Gamma_{Z \to e^+e^-}}
\]

The cross section for the process \(pp \to Z \to e^+e^- \) can be expanded in power of \(\alpha_s \) and \(\alpha \)

\[
d\sigma = \sum_{i,j} \frac{\alpha_s^i \alpha_s^j}{2\pi^2} \delta\sigma^{(i,j)} = \sum_{i,j} d\sigma^{(i,j)}
\]

The partial decay width is expanded perturbatively, so is the ratio \(d\Gamma/\Gamma \):

\[
\Gamma_{Z \to e^+e^-} = \Gamma^0 \times \left(1 + \alpha \delta_{dec}^{(0,1)} + \alpha_s \delta_{dec}^{(1,1)} \right) + \mathcal{O}(\alpha^2, \alpha_s^2)
\]

\[d\Gamma_{Z \to e^+e^-} = d\Gamma^{(0,0)} + d\Gamma^{(0,1)} + d\Gamma^{(1,1)} + \mathcal{O}(\alpha^2, \alpha_s^2)\]

The mixed QCDxEW corrections to the cross sections thus read

\[
d\sigma^{(1,1)} = Br(Z \to e^+e^-) \times \left[d\sigma_{pp \to Z}^{(1,1)} \times \frac{d\Gamma^{(0,0)}}{\Gamma^0} + \right]
\]

"production only"

\[
d\sigma^{(1,0)} \times \left(\frac{d\Gamma^{(0,1)}}{\Gamma^0} - \alpha \frac{d\Gamma^{(0,0)}}{\Gamma^0} \delta_{dec}^{(0,1)} \right) + d\sigma^{(0,0)} \times \left(\frac{d\Gamma^{(1,1)}}{\Gamma^0} - \alpha_s \frac{d\Gamma^{(0,0)}}{\Gamma^0} \delta_{dec}^{(1,1)} \right)
\]

final-state effects