

MULTIBOSON MEASUREMENTS WITH RUN 2 DATA AT CMS

Alessandro Da Rold, on behalf of the CMS Collaboration

Paris (Virtual), 27 May 2020

OVERVIEW

Introduction

- Introduction and motivation
- Experimental features
- EFT and interpretation of results
- Multi-boson analyses
 - ► W+W- <u>CMS-PAS-SMP-18-004</u>
 - VVV <u>CMS-PAS-SMP-19-014</u>
 - WWW <u>CERN-EP-2019-074</u>

Vector Boson Scattering See Mariarosaria's talk on Friday!

INTRODUCTION AND MOTIVATION

- Non-abelian gauge structure of the SM allows for vector boson self interactions → Triple (TGC) and Quartic Gauge Couplings (QGC)
- Multiboson final states important test of the electro-weak sector of the Standard Model → Precise measurement of the coupling values
- Probing the strength of the couplings is an indirect search for new physics
- Many multiboson final states are backgrounds to searches for new physics → Fundamental to have a detailed description
- Two main groups of processes: QCD production and Vector Boson Scattering (VBS)

EXPERIMENTAL CHALLENGES

Complex final state (high particle multiplicity)

- ► High precision needed in the measurements → Small deviations can be linked to the presence of new physics, EFT interpretation
- Measurement of inclusive cross sections and evidence/observation of processes never measured before

Sequential cuts selection

- 2 opposite charge isolated leptons (e, μ), m_{ll} > 20 GeV
- Projection of p_T^{miss} perpendicular to lepton momentum > 20 GeV
 Reduce nonprompt background
- MVA to discriminate
 DY background, for
 same flavour leptons
 |m_{ll} M_Z| > 15 GeV
- O or 1 jets with
 p_T > 30, b-jet veto

- Important background source in searches for new particles
- Production from qq̄, gg (at higher order) or H→WW

W+W-

Analysis performed with sequential cuts and Random Forest Classifiers

RANDOM FOREST CLASSIFIER

- Main background sources form DY and tt→ Build two RFC to better reduce contamination
- ▶ RFC score \approx 1 for the signal and \approx 0 for background
- Signal efficiency and purity higher than sequential cuts analysis

- Selection
 - 2 opposite charge isolated leptons (e, μ), m_{ll} > 30 GeV
 - For same flavour leptons
 |m_{ll} M_Z| > 15 GeV
 - b-veto applied to jets

Backgrounds

tt and single top

CR with at least 1
 b-jet to normalise

Sequential cuts

CR with S_{DY}>0.6 & S_{tt}<0.6 to normalise

Random Forest Classifier

Drell-Yan

- SF: normalisation from events inside and outside peak region
- ► DF: $Z \rightarrow \tau \tau$, CR with m_{eµ} < 80 GeV
 - CR with S_{DY}<0.6 & S_{tt}>0.6, good data-MC agreement, yield use to normalise

Nonprompt (W+jets)

 Fake rate from data-driven pass-fail (p_T, η)

CR with 2 same sign
 leptons (dominated by nonprompt), transfer
 factor from CR to SR

Systematics

Sequential cuts

Statistical	1.2 %	μ _R μ _F	0.4 %
tt normalisation	2.0 %	Higher order QCD	1.4 %
DY normalisation	1.4 %	PDFs	0.4 %
Lepton efficiencies	2.1 %	Total theoretical	1.6 %
JES and JER	2.3 %		
Total experimental	4.6 %	Total	5.7 %

TOTAL CROSS SECTION

Theoretical prediction: $\sigma_{tot}^{NNLO} = 118.8 \pm 3.6 \text{ pb}$

Sequential cuts

- Fit SR + tt CR, same and different flavour, 0 and 1 jets
- Consistency of signal strength proves consistency of the model

Category		Signal strength
0-jet	DF	1.054 ± 0.083
0-jet	SF	1.011 ± 0.160
1-jet	DF	0.930 ± 0.124
1-jet	SF	0.757 ± 0.200
0-jet & 1-jet	DF	1.027 ± 0.071
0-jet & 1-jet	SF	0.892 ± 0.157
0-jet & 1-jet	DF & SF	0.990 ± 0.057

σ_{tot}^{SC}=117.6±1.4(stat)±5.5(syst)±3.2(lumi) =117.6±6.8 pb

Random Forest Classifier

- Higher order QCD calculations taken into account by reweighting p_T^{ww} spectrum
- Result more sensitive to theoretical correction

σ_{tot}^{RFC}=131.4±1.3(stat)±6.0(syst)±3.5(lumi) =131.4±8.7 pb 8

FIDUCIAL AND DIFFERENTIAL σ

- Fiducial cross section in agreement with SM⁴ σ^{fid}=1.529+0.097 -¹ $\sigma^{fid}=1.529\pm0.087 \text{ pb}$ $\sigma_{NNLO}^{fid}=1.531\pm0.043 \text{ pb}$
- Measured jet dependent cross section $\sigma^{fid}(0-jet)=1.61\pm0.10 \text{ pb} \sigma^{fid}(1-jet)=1.35\pm0.11 \text{ pb}$
- **Differential** cross sections measured for m_{II}, p_T and $\Delta \phi_{\parallel}$

JETS MULTIPLICITY

- Probe of theoretical calculations and events generators
- Signal region with S_{DY}>0.96 & S_{tt}>0.2 to reduce efficiency dependence on pTWW
- Possible migration of N_i events due to pileup and jet energy measurement - Unfolding with **R**_{PU} and **R**_{DET}

One parameter scan

Two parameters scan

LIMITS ON ATGC

Coefficients	68% CL	interval	95% CL	interval
$({\rm TeV}^{-2})$	expected	observed	expected	observed
$c_{\rm WWW}/\Lambda^2$	[-1.78, 1.82]	[-0.93, 0.99]	[-2.67, 2.71]	[-1.78, 1.84]
$c_{\rm W}/\Lambda^2$	[-3.67, 2.68]	[-2.03, 1.33]	[-5.28, 4.22]	[-3.56, 2.78]
c_B/Λ^2	[-9.45, 8.40]	[-5.14, 4.30]	[-13.9, 12.8]	[-9.35, 8.46]

Measure both inclusive and single channel cross sections

WWW \rightarrow I \pm I \pm 2v qq'

- ▶ 2 same sign leptons, \ge 1 jets
- 9 categories: lepton flavour (ee, eµ, µµ), 1 jet and 2 jets with 65 < m_{jj} < 95 GeV and outside
- Backgrounds: lost lepton, SS leptons
 + jets, nonprompt

WWW→l±l±l∓ 3v

- 0, 1 or 2 same-flavour opposite charge lepton pairs (SFOS)
- m_⊪ incompatible with M_Z
- Backgrounds: lost lepton, SS leptons
 + jets, nonprompt

W±W∓Z→I±I∓ 2v (I±I∓)

- SFOS lepton pair with mll within 10 GeV of M_Z
- Dominant background from ZZ production

 $WZZ \rightarrow |v (|\pm|\mp) (|\pm|\mp)$ $ZZZ \rightarrow (|\pm|\mp) (|\pm|\mp) (|\pm|\mp)$

- Very small cross sections and BR
- 5I: must have 2 SFOS close to M_Z, p_T^{miss} > 50 GeV, backgrounds from ZZ and nonprompt leptons
- 6I: 3 SFOS pairs, very small background from ttH and ZZ

VVV

- Nonprompt lepton background estimated form data exploiting isolation variables
- Boosted Decision Tree trained with simulated background and signal
 - Two BDT applied in sequence for channels with more than one background categories (for WWW: nonprompt and others)
- 4I WWZ category main background contribution from $ZZ \rightarrow p_T^{miss}$ cut

- Systematic uncertainties
 - Limited statistic in control regions 5-25%
 - Nonprompt bkg estimation up to 50%
 - Higher order corrections and PDFs 3-15%

VVV

- Measured signal strength in agreement with SM prediction
- Discrimination of signal and background enhanced with BDT approach

Channel	Cross section (fb)
Higgs boson contributions as signal	
VVV	$1010^{+210}_{-200}{}^{+150}_{-120}$
WWW	$590^{+\bar{1}60}_{-150}$ $^{+\bar{1}60}_{-130}$
WWZ	300^{+120}_{-100} $^{+50}_{-40}$
WZZ	200^{+160}_{-110} $^{+70}_{-20}$
ZZZ	<200
Higgs boson contributions as background	
VVV	$370^{+140}_{-130}{}^{+80}_{-60}$
WWW	190^{+110}_{-100} $^{+80}_{-70}$
WWZ	$100 \begin{array}{r} +80 \\ -70 \end{array} \begin{array}{r} +30 \\ -30 \end{array}$
WZZ	110^{+100}_{-70}
ZZZ	<80

Observed (expected) significances

Channel	Cut-and-count	BDT
WWW *	2.5 (2.9)	3.3 (3.1)
WWZ	3.5 (3.6)	3.4 (4.1)
WZZ	1.6 (0.7)	1.7 (0.7)
ZZZ	0.0 (0.9)	0.0 (0.9)

* 2016 only (35.9 fb⁻¹) result: 0.60 (1.78) 14

WWW

Results from 2016-only data

35.9 fb⁻¹

- Sum of p_T of leptons and jets (S_T) exploited to study aQGC at high values ($S_T > 1.5$ TeV in 2I+2j and > 2 TeV in 3I)
- Study of **axion like particle** (ALP) production: $Wa \rightarrow WWW$ has largest production cross section for $m_a > 2m_W$
- SM WWW treated as background, no evidence for an **excess**
- W+ALP production excluded up to 480 GeV

Anomalous coupling	Allowed range (TeV $^{-4}$)	
	Expected	Observed
$f_{\mathrm{T,0}}/\Lambda^4$	[-1.3, 1.3]	[-1.2, 1.2]
$f_{\mathrm{T,1}}/\Lambda^4$	[-3.7, 3.7]	[-3.3, 3.3]
$f_{\mathrm{T,2}}/\Lambda^4$	[-3.0, 2.9]	[-2.7, 2.6]

 m_{a} [GeV] 15

SUMMARY

- With LHC Run 2 data, multi-boson processes accessible
- Cross sections measured for many different processes

- Limits on anomalous couplings more and more stringent, increased sensitivity on new physics processes
- Some explicit BSM models tested and excluded up to high energies
- From experimental measurements, information on processes at theoretical level (improvement of Monte Carlo simulations)

For further discussion, Zoom link: 516-275-3909

RESULTS INTERPRETATION

Presence of effects beyond the SM (BSM) can change the value of the couplings
 Anomalous Gauge Couplings

• Effective Field Theories (EFT) provide a model-independent extension of the SM

$$\mathscr{L}_{aQGC} = \mathscr{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^{d-4}} O_i + \dots$$

 Λ is the energy scale of the new physics, d is the dimension of the operator, f_i is the strength of the coupling

CMS-PAS-SMP-19-001

Important test of NNLO QCD calculations (production via qq and gluon fusion at higher order)

 Backgrounds from Z+jets and WZ+jets estimated with "contamination factors" from data control regions

Selection

- 2 pairs of opposite sign isolated leptons (e, μ)
- Combinatorial solved with closeness to M_Z
- ▶ 60 < m_{Z1},m_{Z2} < 120 GeV

Systematic uncertainties

- Lepton efficiency 2-8%
- PDF + scale
 variations 1%

Lepton misidentification probability 1%

ΖZ

- Analysis performed for 2017 and 2018 and then combined with previous CMS results with 2016 data (<u>CERN-EP-2017-219</u>)
- Simultaneous fit performed on all decay channels (eeee, eeµµ, µµµµ)
- Measured cross section in agreement with SM predictions (both POWHEG and MCFM)
- Both CMS and ATLAS results in agreement with theoretical prediction at different energies

Year	Total cross section, pb
2016 [5]	$17.5^{+0.6}_{-0.5}(ext{stat})\pm0.6(ext{syst})\pm0.4(ext{theo})\pm0.4(ext{lumi})$
2017	16.8 ± 0.5 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.4 (lumi)
2018	16.8 ± 0.4 (stat) ± 0.6 (syst) ± 0.4 (theo) ± 0.4 (lumi)
Combined	17.1 ± 0.3 (stat) ± 0.4 (syst) ± 0.4 (theo) ± 0.3 (lumi)

WW DOUBLE PARTON SCATTERING

 $\sigma_{AB}^{DPS} = \frac{n}{2} \frac{\sigma_A \sigma_B}{\sigma_e ff}$ Single hadron scattering xsec Double parton scattering xsec

- SM WW production has two additional jets
- Two same-sign leptons final state is clean
- DPS WW never observed
 - Test of factorisation approach (useful for MC simulations)
 - Background for SUSY searches

Selection

- Same charge eµ or µµ
- $p_T^{miss} > 15 \text{ GeV}$
- At most one non-b jet
- Backgrounds
 - True same charge leptons (WZ)
 - Nonprompt leptons (tight-to-loose in data)
- Boosted Decision Tree based on presence of Lorentz boost in WZ processes
- Two classifier for the two backgrounds 21

WW DOUBLE PARTON SCATTERING

- Theoretical prediction of DPS xsec has very low precision
 - PYTHIA prediction $\sigma_{DPS}=1.92$ pb, expected significance 5.4 σ
 - Factorisation approach $\sigma_{DPS}=0.87$ pb, expected significance 2.5 σ
- Measured cross section and significance do not depend on predicted ones

σ_{DPS}(WW)=1.41±0.20(stat)±0.28(syst) pb

Significance 3.90

• σ_{EFF}=12.7^{+5.0}_{-2.9} mb consistent with previous measurements with different final states
• σ_{EFF}=12.7^{+5.0}_{-2.9} mb consistent with previous measurements with different final states

Systematics

22

- Estimation of nonprompt lepton contribution 25-40%
- Charge misid background 30%
- WZ (ZZ) bkg 16(6)%

