NLO EFT in Drell-Yan: Theory Errors and their Impact

William Shepherd LHCP 2020 'Paris', May 25, 2020

Based on...

 1611.09879 with Christine Hartmann and Michael Trott

Introduction: EFT

- The canonical example of an EFT is Fermi's theory of weak decay A real limit of the SM
- We still use this today!

- Captures physics in a particular energy regime – Count in powers of E/Mw
- Ability to systematically improve theory predictions is the key virtue of EFTs

Warsaw Basis

$1: X^{3}$		$2: H^6$		$3:H^4D^2$		5 :	$5: \psi^2 H^3 + h.c.$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	(H^{\dagger})	$H)\Box(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$Q_{\widetilde{G}}$	$f^{ABC} {\tilde G}^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$			Q_{HD}	$(H^{\dagger}D_{\mu}$	H) [*] $(H^{\dagger}D_{\mu}H)$	Q_{uH}	$(H^\dagger H)(\bar{q}_p u_r \widetilde{H})$
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$							
$4: X^2 H^2$		$6:\psi^2 XH + \text{h.c.}$			$7:\psi^2 H^2 D$			
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} \epsilon)$	$(e_r)\tau^I H W$	$I_{\mu\nu}$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\vec{\mathcal{O}}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu i})$	$\nu e_r)HB_{\mu\nu}$,	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A u_r) \widetilde{H} $	$\gamma_{\mu\nu}^{A}$	Q_{He}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\overline{e}_{p}\gamma^{\mu}e_{r})$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u)$	$(u_r)\tau^I \widetilde{H} W$	${}^{TI}_{\mu u}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{L}$	$(\bar{q}_p \gamma^\mu q_r)$
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu})$	$(u_r)\widetilde{H} B_\mu$	ν	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D})$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(T^A d_r) H G$	$^{A}_{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} \sigma)$	$(d_r)\tau^I H W$	$^{TI}_{\mu u}$	Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$\partial_{\mu}H)(\bar{d}_p\gamma^{\mu}d_r)$
$Q_{H\widetilde{W}B}$	$H^\dagger \tau^I H \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu i})$	$(d_r)H B_\mu$	ν	Q_{Hud} + h.c.	$i(\widetilde{H}^{\dagger}L)$	$(\bar{u}_p \gamma^\mu d_r)$

Warsaw Basis: 4-fermion

	$8:(\bar{L}L)(\bar{L}L)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	

	$8:(\bar{R}R)(\bar{R}R)$
Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$
Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$
Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$

 $8:(\bar{L}L)(\bar{R}R)$ Q_{le} $(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$ Q_{lu} $(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$ Q_{ld} $(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$ Q_{qe} $Q_{qu}^{(1)}$ $(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$ $Q_{qu}^{(8)}$ $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$ $Q_{qd}^{(1)}$ $(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$ $Q_{qd}^{(8)}$ $(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)$

$8: (\bar{L}R)(\bar{R}L) + h.c.$		$8: (\bar{L}R)(\bar{L}R) + h.c.$		
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$	
		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$	
		$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r)\epsilon_{jk}(\bar{q}_s^k u_t)$	
		$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

Why Loops?

- Electroweak observables have been measured with amazing precision
 - Theory calculations have to match this precision to get full value out of the data

Observable	Experimental Value	Ref.	SM Theoretical Value	Ref.
$\hat{m}_Z[\text{GeV}]$	91.1875 ± 0.0021	[38]	-	-
$\hat{m}_W[\text{GeV}]$	80.385 ± 0.015	[39]	80.365 ± 0.004	[40]
σ_h^0 [nb]	41.540 ± 0.037	[38]	41.488 ± 0.006	[41]
$\Gamma_Z[\text{GeV}]$	2.4952 ± 0.0023	[38]	2.4942 ± 0.0005	[41]
R_{ℓ}^0	20.767 ± 0.025	[38]	20.751 ± 0.005	[41]
R_b^0	0.21629 ± 0.00066	[38]	0.21580 ± 0.00015	[41]
R_c^0	0.1721 ± 0.0030	[38]	0.17223 ± 0.00005	[41]
A_{FB}^{ℓ}	0.0171 ± 0.0010	[38]	0.01616 ± 0.00008	[42]
A_{FB}^{c}	0.0707 ± 0.0035	[38]	0.0735 ± 0.0002	[42]
A^b_{FB}	0.0992 ± 0.0016	[38]	0.1029 ± 0.0003	[42]

Why Loops?

• What is the theory error on a tree-level prediction for EFT effects?

– Standard loop factor is
$$\frac{1}{16\pi^2} \sim 1\%$$

$$-\frac{v^2}{\Lambda^2} \sim 1\%$$
 as well

- Numerical coefficients not known a priori
- SMEFT renormalization known, RG improvement will capture logs
 - For LHC-scale physics logs aren't so large
 - Pure-finite effects can be of comparable size

Large y_t , λ limit

- These two couplings are known to be sizeable
 Only QCD coupling compares
- Calculations are simpler in vanishing gauge coupling limit
 - Gauge fixing in the presence of D=6 operators leads to additional subtleties
 - Gauge independence assured here
- A good first step toward a full NLO treatment of the problem

Contributing Operators

• 4-fermion operators:

• Scalar-fermionic current operators:

Contributing Operators

• Gauge-Higgs operators:

• Dipole operators:

Input Parameters

- Any calculation depends on the inputs used to set the theory parameters
- We use a canonical set of inputs for the SM $-\alpha_{EM}, G_F, M_Z, M_t, M_h$
- EFT gives corrections to the extraction of each
- We treat the Wilson coefficients in MS at the NP scale as EFT input parameters to be measured and/or constrained

Numerics

The δ correction to \bar{R}^b_ℓ is given by

$$\frac{\delta R_b^0}{10^{-2}} = -0.192 C_{Hd} + 0.039 C_{HD} + 0.158 C_{H\ell}^{(3)} + 2.13 C_{Hq}^{(1)} - 0.055 C_{Hq}^{(3)}, -0.494 C_{Hu} + 0.043 C_{HWB} - 0.079 C_{\ell\ell}.$$
(7.35)

Similarly, the $\delta\,\Delta$ correction to \bar{R}^0_b has the contributions

$$\begin{aligned} \frac{\delta\Delta R_b^0}{10^{-3}} &= \left[\left(0.036\,\Delta\bar{v}_T + 0.083 \right) C_{Hd} + \left(0.011\,\Delta\bar{v}_T + 0.013 \right) C_{HD} + \left(0.084\,\Delta\bar{v}_T - 0.014 \right) C_{H\ell}^{(3)} \right. \\ &\quad \left. - \left(0.085\,\Delta\bar{v}_T + 0.152 \right) C_{Hq}^{(1)} - \left(0.016\,\Delta\bar{v}_T + 0.019 \right) C_{Hq}^{(3)} + \left(0.099\,\Delta\bar{v}_T + 0.208 \right) C_{Hu} \right. \\ &\quad \left. - \left(0.042\,\Delta\bar{v}_T - 0.007 \right) C_{\ell\ell} + \left(0.013\,\Delta\bar{v}_T + 0.009 \right) C_{HWB} - 0.015\,C_{\ell q}^{(3)} \right. \\ &\quad \left. + 0.597\,C_{qq}^{(3)} + 0.047\,C_{uH} - 0.006\,(C_{HB} + C_{HW}) - 0.106\,\Delta v \right], \end{aligned}$$
(7.36) and the $\delta \Delta$ correction to R_b^0 also has the logarithmic terms

$$\frac{\delta\Delta R_b^0}{10^{-3}} = \left[0.129 \, C_{Hd} + 0.025 \, C_{HD} + 0.067 \, C_{H\ell}^{(3)} - 0.559 \, C_{Hq}^{(1)} + 0.383 \, C_{Hq}^{(3)} + 0.240 \, C_{Hu}, \\
+ 0.023 \, C_{HWB} - 0.049 \, C_{\ell\ell} + 0.030 \, C_{\ell q}^{(3)} + 0.036 \left(C_{qd}^{(1)} - C_{ud}^{(1)} \right) - 0.618 \, C_{qq}^{(3)}, \quad (7.37) \\
- 0.803 \, C_{qq}^{(1)} + 0.494 \, C_{qu}^{(1)} - 0.002 \, C_{uB} + 0.032 \, C_{uH} - 0.004 \, C_{uW} - 0.186 \, C_{uu} \right] \log \left[\frac{\Lambda^2}{\hat{m}_t^2} \right] \\
+ \left[-8.94 \times 10^{-7} \, C_{HD} + \left(0.313 \, C_{Hd} - 3.49 \, C_{Hq}^{(1)} + 0.090 \, C_{Hq}^{(3)} - 0.258 \, C_{H\ell}^{(3)}, \\
+ 0.808 \, C_{Hu} + 0.129 \, C_{\ell\ell} - 0.020 \, C_{HWB} \right) 10^{-2} \right] \log \left[\frac{\Lambda^2}{\hat{m}_h^2} \right].$$

Phenomenology

- Counting is all that's needed for the most important point
- NLO corrections have introduced dependence on (neglecting flavor indices):
 - 3 Higgs-gauge WCs
 - 2 Dipole WCs
 - 7 Higgs-fermion current WCs
 - 9 four-fermion WCs
- At this level of precision, we can measure only 5 Z pole observables (A_{FB} goes beyond NWA)

Phenomenology

- Recall that at tree level there were flat directions in Z pole observables

 Lifted by TGC measurements
- With this increase in relevant parameters, all of EWPD not enough to constrain the EFT
- The lesson: loop corrections cannot be constrained by EWPD alone, thus EWPD bounds (at tree level) can never be more precise than a loop factor on WCs

Why should we care about uncertainties in signals?

- Neglecting or downplaying signal-function theory errors is very common in the pheno community
 - Idea being that you can clean up the calculations once we find something, but signatures won't change drastically
- Neglecting errors is never correct in precision measurements or calculations, though, and that's the business we're in

A Quote from a Model Builder

"Whatever bound you get from your EFT, I can always write down a model that passes the test against data and violates the bound you claim to have." – Bhaskar Dutta

Based on...

- 1812.07575 with Stefan Alte and Matthias König
- 2006.xxxxx with Alyssa Horne, Jordan Pittman, Marcus Snedeker, and Joel Walker

How to build a collider search

- Canonical search design boils down to plugging a new physics model into Monte Carlo tools and constraining what comes out
 - Many nice tools exist for this purpose now, e.g. SMEFTsim
- Greatest challenge to such a search is the concern about EFT consistency; this description breaks down when the new particles are light enough
 - Ensuring EFT internal consistency is the best modelindependent way of addressing this concern
 - EFT is a new perturbation series; need to estimate size of neglected contributions at next order as theory error

Dileptons from SMEFT

- Two types of contributions to dileptons from SMEFT
 - Z couplings can be shifted by SMEFT operator contributions
 - Direct four-fermion operators give amplitudes growing with energy

Shift Operators	Direct Forward Operators	Direct Backward Operators
$Q_{HWB} \equiv H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	$Q_{lq}^{(1)}\equiv\left(ar{l}_p\gamma_\mu l_p ight)\left(ar{q}_s\gamma^\mu q_s ight)$	$Q_{lu} \equiv \left(\bar{l}_p \gamma_\mu l_p ight) \left(\bar{u}_s \gamma^\mu u_s ight)$
$Q_{ll}^{\prime}\equiv(ar{l}_p\gamma_{\mu}l_r)(ar{l}_s\gamma^{\mu}l_t)$	$Q_{lq}^{(3)} \equiv \left(\bar{l}_p \gamma_\mu \tau^I l_p \right) \left(\bar{q}_s \gamma^\mu \tau^I q_s \right)$	$Q_{ld} \equiv \left(ar{l}_p \gamma_\mu l_p ight) \left(ar{d}_s \gamma^\mu d_s ight)$
$Q_{Hd} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{eu} \equiv (\bar{e}_p \gamma_\mu e_p) \left(\bar{u}_s \gamma^\mu u_s ight)$	$Q_{qe} \equiv \left(\bar{q}_p \gamma_\mu q_p\right) \left(\bar{e}_s \gamma^\mu e_s\right)$
$Q_{Hu} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	$Q_{ed}\equiv\left(ar{e}_p\gamma_\mu e_p ight)\left(ar{d}_s\gamma^\mu d_s ight)$	
$Q_{He} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_p\gamma^{\mu}e_r)$		
$Q_{Hl}^{(1)} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$		
$Q_{Hl}^{(3)} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
$Q_{Hq}^{(1)} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$		
$Q_{Hq}^{(3)} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{HD} \equiv (H^{\dagger}D_{\mu}H)^{*}(H^{\dagger}D_{\mu}H)$		

Forward/Backward production

 $c_{\text{fwd}} = C_{lq}^{(3)} - 0.48 C_{eu} - 0.33 C_{lq}^{(1)} + 0.15 C_{ed}$

 $c_{\rm bwd} = C_{lu} + 0.81 \, C_{qe} - 0.33 \, C_{ld}$

07/17/2019

Theory Error Treatment

• Dim-8 effects are order $\frac{1}{\Lambda^4}$, signal is $\frac{1}{\Lambda^2}$ – Dim-6-squared is also order $\frac{1}{\Lambda^4}$, can use that as a

mock-up of total term of that order

- Model theory error as $\left(c_6^2 + g_w^2 c_8 \sqrt{N_8}\right) \sigma_{d6^2}$
 - Uncorrelated between bins

– Insist $c_8 \gtrsim 1$, c_6

• Sum in quadrature with other error sources

LHC Sensitivity

LHC Sensitivity

Conclusions

- We have excellent data available, and must have enough respect for that to understand our new physics predictions at comparable precision
- In the most model-independent formulation of heavy new physics, the SMEFT parameter space is under-constrained by low energy data
 - Loops in Z-pole data make this completely unavoidable
- A truly global analysis will be needed to properly constrain the EFT without UV assumptions
 - Developing more off-shell observables that can be consistently constrained is an important future path for this field
 - Dijets and dileptons are a first step toward this global analysis goal; other directions ongoing, but much still to do

The Take-Away

- Setting shifts in EW observables to zero for the purposes of further searches does not give model-independent results
- Neglecting theory errors gets our analyses ignored by model-builders, who should be our biggest customers, so definitely stop doing that!
 - Produce results that they can't evade by utilizing an honest error estimate
 - 'New and improved' sales pitch needed to bring them back
 - Push back against any claim that a model can always be built to evade our EFT results

We need to make Bhaskar wrong about this!

"Whatever bound you get from your EFT, I can always write down a model that passes the test against data and violates the bound you claim to have." – Bhaskar Dutta

Thank You!

Please visit with me in the coffee break!

https://shsu.zoom.us/j/97927003584

Password: same as this room

Backup: Dijets

Based on...

- 1711.07484 with Stefan Alte and Matthias König
- 1907.13160 with Eduard Keilmann

Dijets from EFT

07/17/2019

William Shepherd, SHSU

Quark Compositeness

- Searches originally proposed by Eichten, Lane, and Peskin in 1983, they posit some contact interaction between quarks
- This is not an EFT treatment, nor is it meant to be; it's a specific UV model
- To do a proper EFT expansion requires care
 - Consider the errors arising from unknown (or neglected) operators
 - Investigate the effects of all operators at a given power-counting order on the given observable

Compositeness Search Signal

- The quark compositeness search has kept all terms naively predicted by the dimension 6 operator $Q_{qq}^{(1)}$, including squared term
- This is strongly centrally peaked, as the interference is central and the squared term even more so
- Thus, a search in angular variables is a natural technique to distinguish it from the SM

EFT error treatment

- The consistent EFT treatment is to expand the observable in a power series
 - Cross section, not amplitude
- Must include the full set of contributing operators at dim-6
 - Surprisingly, only two independent angular distributions contribute strongly
 - Remaining small differences arise from PDF evolution
- As we only have the full dim-6 contribution, everything else ought to be discarded
- The dim-6 squared piece is a proxy for the size of the unknown total dim-8 contribution
 - Note that additional operators needn't give correlated angular distribution

Search in Un-Normalized Distributions

- There can be large systematic differences between signal and background if we don't discard total crosssection information
- These analyses are bounded by EFT error at low χ, but statistics are important elsewhere

 $L_{\rm int} = 2.6 \text{ fb}^{-1}, \ 4.2 \text{ TeV} < m_{jj} < 4.8 \text{ TeV}$

Search in Un-Normalized Distributions

- There can be large systematic differences between signal and background if we don't discard total crosssection information
- These analyses are bounded by EFT error at low χ, but statistics are important elsewhere

800 600 ح ₄₀₀ 200 $\begin{array}{c}
 0 \\
 1.5
 \end{array}$ 1.08 0.52 3 $\mathbf{5}$ 6 7 8 9 10 1214 16 1 4 χ

 $L_{\rm int} = 50 \text{ fb}^{-1}, \ 4.2 \text{ TeV} < m_{jj} < 4.8 \text{ TeV}$

Interpretation of EFT Bounds

- EFT signal size is only sensitive to the combination c_i/Λ^2 , cannot distinguish the two Broken weakly by RG effects
- This leaves us two ways to interpret the bounds coming from any EFT search
 - If we fix the new physics scale, searches bound
 Wilson coefficients
 - Fixed coefficients lead to bounds on mass scale

Reach: Fixed Wilson Coefficient

07/17/2019

William Shepherd, SHSU

Reach: Fixed NP Scale

• For large N8, only a narrow angle in coupling space can be constrained

William Shepherd, SHSU

Low Lambda Dijets

- Can Tevatron data fill in the low-lambda region from the dijet study earlier?
 - Recall, dijet bounds lost sensitivity below 5 TeV or even higher
- Luckily, dijet cross section was measured at Tevatron as well

Tevatron Dijet Cross Section

Tevatron Dijet Cross Section

SMEFT Dijets at Tevatron

Full-spectrum fits to Tevatron

- Fits to Tevatron data for the reported and full experimental luminosity
 - Note that this is fit over a large number of bins (71), so these test statistic values are not significant
 - Also, the full lumi fit assumes that systematics scale like statistics, which is aggressive

Optimized cut-and-count Tevatron

0.5

0.4

0.3

0.2

0.1

40

20

- Cutting out optimal region isn't much better
- Single-bin analysis with best sensitivity shown above, note we never reach 1sigma here

Tevatron can't constrain SMEFT dijets

- The dataset is simply too small for such a messy final state
 - An excellent argument for the high-lumi phase of the LHC
- This isn't necessarily disastrous; new interactions of colored particles at few TeV (we hope) would be directly probed as resonances at the LHC

Backup: Flavor Matching

Based on...

- 1903.00500 with Tobias Hurth and Sophie Renner
- 2003.05432 with Rafael Aoude, Tobias Hurth, and Sophie Renner

MFV and the SMEFT

- We can insist that all flavor violation is given by powers of Yukawa matrices
 - Allowing arbitrary powers returns back to the full flavor-violation basis, with an approximate U(2)²
- Allowing no CP or flavor violation leaves only 16+20 parameters, linear flavor violation permits an additional 11 operators
- SM loops still generate obligatory FV effects which involve these new physics interactions

Matching SMEFT to WET

- Given loop-origin of FV in this ansatz, focus on down-type neutral transitions
 - Grants access to large top-Yukawa effects
 - SM process also at loop level
- WET operators of interest are dipoles and 4fermi interactions
 - Standard basis for b-physics labels these as O1-10
 - For cleaner observables involving photons or leptons, O7-10 are most relevant

4-fermi operators

- Most 4-fermion operators that contribute are mixed quark-lepton operators
- SM charged-current loop then gives access to flavor changing effects
 - Non-top effects cancel mass-independent terms by GIM

4-fermi operators – tree level FCNCs

- 4-doublet operators can yield tree-level flavor changes due to CKM effects
- These will run into observable operators either with explicit matching or WET running

William Shepherd, SHSU

Higgs-leptonic current operators

- Correct Z coupling to leptons
 Tree-level effect in Z-pole data
- Also give new graphs
 - Necessary to achieve gauge invariant final answer

Higgs-leptonic current operators

- Triplet operators give corrections to W and Z couplings to leptons
- Again also generate new diagrams important for gauge invariance

Higgs-quark current operators

- Correct couplings of Z to quarks
 Triplet operator also corrects coupling of W
- Yield new bubble-type graphs with 4-point interaction

Input parameter effects

- Importantly, input parameter shifts also play a role in this process
- Gives sensitivity to e.g. four-lepton operator
- Unavoidable consequence of QFT
 - Lagrangian parameters are not observables
 - Must calculate all observables in same theory
- These contributions have been neglected in the flavor literature thus far

So what can we learn from flavor?

- Clearly flavor-bland models still contribute to flavor observables
- How big are these effects, and how can we best understand them?
- Could quote bounds on each operator we turn on, one at a time, but that's definitely wrong
 - Gives very strong constraints that don't hold when additional directions in parameter space explored

Global Fitting

- Really need to explore all directions at once
- Consider a set of interesting observables, and all the operators that affect them
- Develop a region of parameter space that is allowed and one that is excluded
- For illustration, we'll look at FCNC flavor effects, Higgs rates, low-E and Z-pole scattering, and LEP WW production

Relevant Operators

Illustrative Example

- Imagine, for no good reason, that only operators that contribute to Z-pole observables are active.
 {C_{HWB}, C_{HD}, C⁽¹⁾_{Hl}, C⁽³⁾_{Hl}, C⁽¹⁾_{Hq}, C⁽³⁾_{Hq}, C_{Hu}, C_{Hd}, C_{He}, C'_{ll}}
- Famously, there are two unconstrained directions when considering this data alone; traditionally this is constrained by adding LEP WW production data.
 - Higgs and flavor also make contact with these unconstrained directions in parameter space

Z-pole flat directions

LEP WW Higgs Flavor

William Shepherd, SHSU

03/03/2020

Real Global Fitting

- We can write our predictions as $\mu(\theta) = \mu_{SM} + \mathbf{H} \cdot \theta$
- Then $\chi^2(\boldsymbol{\theta}) = (\mathbf{y} \boldsymbol{\mu}(\boldsymbol{\theta}))^T \mathbf{V}^{-1} (\mathbf{y} \boldsymbol{\mu}(\boldsymbol{\theta}))$
- Which gives us the maximum likelihood point $\hat{\theta} = (\mathbf{H}^T \mathbf{V}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{V}^{-1} \mathbf{y}$
- And the correlations between Wilson coefficients are encoded in the Fisher matrix

 $\mathbf{F} = \mathbf{H}^T \mathbf{V}^{-1} \mathbf{H} = \mathbf{U}^{-1}$

LO MFV Fit

All 36 Wilson coefficients allowed

Weighted by minimum necessary set of Yukawas

- Including all relevant data, there are 7 unconstrained directions
- Dropping FCNC information, there are 12 flat directions
 - In a model built to avoid flavor constraints, 5 new constraints come from flavor!

LO MFV Fit results

03/03/2020

William Shepherd, SHSU

Flavor-Blind NP Fit

• Let's be even more careful to avoid flavor and turn off anything that needs a Yukawa at the scale of NP. Then, we have 26 coefficients:

 $\{C_{H\Box}, C_{HWB}, C_{HD}, C_{HW}, C_{HB}, C_{HG}, C_{W}, C_{G}, C_{Hl}^{(1)}, C_{Hl}^{(3)}, C_{Hq}^{(1)}, C_{Hq}^{(3)}, C_{Hu}, C_{Hd}, C_{He}, C_{He}, C_{ll}^{(1)}, C_{lq}^{(3)}, C_{lq}^{(1)}, C_{lq}^{(2)}, C_{lq}^{(2)}, C_{lq}^{(3)}, C_$

- Here, including flavor data, there's only one flat direction: $f = \sqrt{2} \left(C_{qq}^{(1)'} + C_{qq}^{(3)'} \right)$
- Without flavor information, there are 3.

Flavor-Blind Fit results

$$c = -0.62 \left(C_{qq}^{(1)\prime} - C_{qq}^{(3)\prime} \right) - 0.30 C_{qq}^{(3)} + 0.06 C_{lq}^{(1)} - 0.04 C_{lq}^{(3)} + 0.02 C_{eu} - 0.07 C_{lu} - 0.02 C_{qe} - 0.01 C_{Hu} - 0.01 C_{Hd} + 0.19 C_{Hq}^{(1)} + 0.11 C_{Hq}^{(3)} + 0.10 C_{He} + 0.13 C_{Hl}^{(1)} + 0.09 C_{Hl}^{(3)} - 0.17 C_{ll}^{\prime} - 0.04 C_{HB} - 0.01 C_{HW} - 0.09 C_{HWB} + 0.01 C_{W}.$$

$$(4.14)$$

William Shepherd, SHSU

Conclusions

- Nothing can avoid flavor data!
 - Even the blandest of models still must pass the taste test
- These constraints can be quite strong, and constitute the *least* amount of information we could imaging getting from flavor in SMEFT
 - Models built with explicit flavor structure will of course learn more from flavor than this
- These inputs to a global fit are important to successfully close a curve in parameter space
 - Limits from low-energy phenomena like this are the most robust for SMEFT – theory errors are well under control here, unlike in high-energy LHC processes, where caution is needed