

VBS/VBF results from CMS

Mariarosaria D'Alfonso

Massachusetts Institute of Technology

on behalf of the CMS collaborations

LHCP2020: The Eighth Annual Conference on Large Hadron Collider Physics 25-30 May 2020

VBS Motivation

The unitarization of the longitudinal Vector Boson Scattering (VBS) cross section by the Higgs boson is a fundamental prediction of the SM which has not been experimentally verified yet.

Two high energetic forward-backward jets, with two central bosons

 $WZjj \rightarrow 3\ell jj$ M.D'Alfonso (MIT)

VBS Signatures

Diboson pair production via VBS at 13TeV being observed:

Very rare processes, cross sections typically ~ few fb

36 /fb 137 /fb

$$W^{+/-}W^{+/-}jj \rightarrow 2\ell jj$$
: SMP-19-012

best EWK vs QCD ratio

WZ jj
$$\rightarrow 3\ell$$
 jj: SMP-19-012

 $Z Z jj \rightarrow 4\ell jj$: SMP-20-001

clean final state, small BR, large contamination from gg→ ZZjj4ljj

$$Z\gamma jj \rightarrow 2\ell \gamma jj$$
: SMP-18-007

Wγ jj →
$$ℓ$$
 γ jj: smp-19-008 new

$$Z\gamma jj \rightarrow 2\ell \gamma jj$$
: SMP-18-007

 $W\gamma jj \rightarrow \ell \gamma jj$: SMP-19-008

 $NWV jj \rightarrow \ell jj jj + ZV jj \rightarrow \ell jj jj$: SMP-18-006

Challenges:

- Dominant experimental uncertainty: jet energy scale from forward jets
- Monte Carlo simulations critical to VBS measurements: rely on differential predictions for EW/QCD separation

W^{+/-}W^{+/-}

Same sign lepton signature

EWK Signal generated at LO with MadGraph5

Background divided in two classes:

- Non prompt / Fakes from data CR
- Prompt irreducible from MC:
 - measured in the CR with ZZ and tZq

WZ signal vs Background

Three leptons final state

Larger QCD induced background:

→ BDT discriminant to isolate the EWK signal

Variable	Definition					
$m_{\rm jj}$	Mass of the leading and trailing jets system					
$ \Delta \eta_{ii} $	Absolute difference in rapidity of the leading and trailing jets					
$\Delta \phi_{\rm jj}$	Absolute difference in azimuthal angles of the leading and trailing jets					
$\Delta \phi_{ m jj}$ $p_{ m T}^{ m j1}$ $p_{ m T}^{ m j2}$ $\eta^{ m j1}$	$p_{ m T}$ of the leading jet					
$p_{\mathrm{T}}^{\mathrm{j2}}$	p_{T} of the trailing jet					
η^{j1}	Pseudorapidity of the leading jet					
$ \eta^{\mathrm{W}}-\eta^{\mathrm{Z}} $	Absolute difference between the rapidities of the Z boson					
	and the charged lepton from the decay of the W boson					
$z^*_{\ell_i}(i=1-3) \ z^*_{3\ell}$	Zeppenfeld variable of the three selected leptons					
$z_{3\ell}^*$	Zeppenfeld variable of the vector sum of the three leptons					
$\Delta R_{i1,Z}$	ΔR between the leading jet and the Z boson					
$ ec{p_{ m T}}^{ m tot} /\sum_i p_{ m T}^i$	Transverse component of the vector sum of the bosons					
	and tagging jets momenta, normalized to their scalar p_{T} sum					

Results W^{+/-}W^{+/-} and WZ

Extract signal strength from binned maximum-likelihood fit:

- WW and WZ measurement made simultaneously
- Simultaneous fit of several regions so that signal and main background are measured at the same time.

Inclusive cross sections

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction without NLO corrections (fb)	Theoretical prediction with NLO corrections (fb)
EW W [±] W [±]	3.98 ± 0.45 $0.37 (stat) \pm 0.25 (syst)$	3.93 ± 0.57	3.31 ± 0.47
EW+QCD $W^{\pm}W^{\pm}$	4.42 ± 0.47 $0.39 (\mathrm{stat}) \pm 0.25 (\mathrm{syst})$	4.34 ± 0.69	3.72 ± 0.59
EW WZ	1.81 ± 0.41 $0.39 (\mathrm{stat}) \pm 0.14 (\mathrm{syst})$	1.41 ± 0.21	1.24 ± 0.18
EW+QCD WZ	4.97 ± 0.46 $0.40 (\mathrm{stat}) \pm 0.23 (\mathrm{syst})$	4.54 ± 0.90	4.36 ± 0.88
QCD WZ	3.15 ± 0.49 $0.45 (\mathrm{stat}) \pm 0.18 (\mathrm{syst})$	3.12 ± 0.70	3.12 ± 0.70

Theoretical uncertainties include statistical, PDF, and scale uncertainties.

Electroweak production of WZ boson pairs: observed (expected) significance of 6.8 (5.3) σ

Statistics limited, expect continued progress in future.

From observation to Measurement.

Test of NLO corrections

4-leptons final state

EWK signal:

VBS LO vs triboson (ZZW and ZZZ) NLO

ggZZ simulation:

QCD ggZZ + 0/1/2 jets at LO with MG5_aMC@NLO + MLM matching to include the box diagrams

Irreducible BKG From MC: qqbarZZ, ggZZ, ttbar Z, WWZ, WZZ, ZZZ

Irreducible Z+X: from fake rate method

Results ZZ

Using the matrix-element discriminant (MELA) to extract the signal

	μ_{exp}	SM σ (fb)	μ_{obs}	Measured σ (fb)			
ZZjj baseline							
EWK	$1.00^{+0.43}_{-0.36}(^{+0.39}_{-0.34})$	$0.275 \pm 0.021_{\text{th.}}$	$1.22^{+0.47}_{-0.40}$	0.33 ^{+0.11} ^{+0.04} _{-0.10 stat.} ^{-0.03} syst.			
EWK+QCD	$1.00^{+0.13}_{-0.12} (\pm 0.06)$	$5.35 \pm 0.51_{\text{th.}}$	$0.99^{\ +0.13}_{\ -0.12}$	$5.29^{+0.31}_{-0.30\mathrm{stat.}} \pm 0.46_{\mathrm{syst.}}$			
VBS-enriched (loose)							
EWK	$1.00^{+0.45}_{-0.38}(^{+0.40}_{-0.35})$	$0.186 \pm 0.015_{\text{th.}}$	$1.08^{+0.47}_{-0.38}$	0.200 +0.078 +0.023 -0.067 stat0.013 syst.			
EWK+QCD	$1.00^{+0.16}_{-0.15}(^{+0.13}_{-0.12})$	$1.21 \pm 0.09_{\text{th.}}$	$0.83^{+0.15}_{-0.13}$	1.00 ^{+0.12} ^{+0.06} _{-0.11 stat.} ^{-0.05} syst.			
VBS-enriched (tight)							
EWK	$1.00^{+0.87}_{-0.65}(^{+0.82}_{-0.64})$	$0.050 \pm 0.005_{\rm th.}$	$1.21^{+0.91}_{-0.68}$	$0.06^{+0.05}_{-0.04}$ stat. ± 0.01 syst.			
EWK+QCD	$1.00 \begin{array}{l} -0.03 \\ +0.29 \\ -0.24 \end{array} \begin{pmatrix} +0.27 \\ -0.23 \end{pmatrix}$	$0.171 \pm 0.012_{\rm th.}$	$0.98^{+0.29}_{-0.24}$	$0.17 \pm 0.04_{\text{stat.}} \pm 0.01_{\text{syst.}}$			

4.0 observed (3.5 expected)

→ evidence for EWK production!

Statistics limited, expect continued progress in future.

SMP-20-001

Results Wy

11

Fiducial cross section is extracted using the *m* jj - *m* ly

After combining with previously reported CMS results based on 8 TeV data, the observed (expected) signal significance is $5.3 (4.8) \sigma$.

Test of the electroweak sector

Summary of the cross sections of pure Electroweak (EWK) interactions among the gauge bosons presented as a ratio compared to theory.

Improvement on the EWK measurement, *no significant deviation from the SM*.

VBF production

Anomalous Quartic Gauge Coupling

Modification of the SM lagrangian with additional dimension-8 operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{F_i}{\Lambda^4} \mathcal{O}_i$$

Anomalous Quartic Gauge Coupling

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{F_i}{\Lambda^4} \mathcal{O}_i$$

Anomalous Quartic Gauge Coupling

Setting limits on quartic gauge couplings (aQGCs). No evidence for SM deviations.

	SMP-20-001	SMP-19-012	SMP-19-008	SMP-18-007	SMP-19-006
channel	ZZ	ssWW+WZ	$W\gamma$	$Z\gamma$	WV + ZV
T0	-0.24, 0.22	-0.69, 0.97	0.6, 0.64	0.74, 0.69	0.12, 0.11
T1	-0.31, 0.31	-0.81, 1.2	0.35, 0.39	0.98, 0.96	0.12, 0.13
T2	-0.63, 0.59	-1.6, 3.1	0.99, 1.18	1.97, 1.86	0.28, 0.28
T5			0.45, 0.46	0.70, 0.75	
T6			0.36, 0.38	1.64, 1.68	
T7			0.87, 0.93	2.59, 2.82	
T8	-0.43, 0.43			0.47, 0.47	
T9	-0.92, 0.92			1.27, 1.27	
M0		-11, 12	8.07, 7.99	19.5, 20.3	0.69, 0.70
M1		11.8, 12.1	40.5, 39.5	2.0, 2.1	0.28, 0.28
M2			2.81, 2.81	8.22, 8.10	
M3			4.41, 4.49	17.7, 17.9	
M4			4.99, 4.95	15.3, 15.8	
M5			8.27, 8.31	25.1, 24.5	
M6		-22, 25	16.2, 16.0	38.9, 40.6	1.3, 1.3
M7		-16, 18	20.8, 20.2	60.3, 62.5	3.4, 3.4
S0		-34, 35			2.7, 2.7
S1		-86, 99			3.4, 3.4

16

Summary and outlook

First measurements with Run2 data completed, more to come with full Run2.

Looking for new physics interactions: interpretation in terms of generic EFT settings or specific models.

Test of the EWK sector will continue in Run3 and at HL-LHC.

backup

WW and WZ signal extraction

EWK WW (Signal) Region: 8 X 4 = 32 bins mjj: [500, 650, 800, 1000, 1200, 1500, 1800, 2300, ∞] GeV mll : [20, 80, 140, 240, ∞] GeV EWK WZ (Signal) Region: 8 bins BDT: [-1,-0.28,0.00,0.23,0.43,0.60,0.74,0.86,1] Nonprompt (Control) Region: 4 bins Inverted b-tagging requirements mjj : [500, 800, 1200, 1800, ∞] GeV ZZ (Control) Region: 4 bins Select ZZ → 4I candidates with the same VBS-like selection as in the SR ■ Exactly four selected leptons (pT > 25/20/10/10 GeV) paired up with each other mjj : [500, 800, 1200, 1800, ∞] GeV WZb(tZq) (Control) Region: 4 bins Same as WZ SR with Inverted b-tagging requirements mjj: [500, 800, 1200, 1800, ∞] GeV