Recent results on hard and rare probes from CMS

Émilien Chapon
on behalf of the CMS Collaboration

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing

LHCP 2020
Paris, France
Rare probes → hard scale processes: produced early in the collision, can be sensitive to the medium evolution

- Electroweak bosons and high energy photons
- Heavy flavour and quarkonia
- Jets and high-p_T hadrons

In this talk

Focusing on jet-related results

- Heavy flavour and quarkonia: see A. Lebedev’s talk on Wednesday, 15:03.
- Initial state and electroweak probes: see talk on Friday, 12:30.
Extracting quark / gluon fractions from jet charge in pp and PbPb

\[Q^K = \frac{1}{(p_{T,jet})^K} \sum_{i \in \text{jet}} q_i p_{T,i}^K \]

- First jet charge measurement in heavy ion collisions
- Exploiting correlation between parton charge and reconstructed jet charge
- Using PYTHIA templates (good description of data)
No significant modification of jet charge distribution in PbPb compared to pp

- **Consistent fractions** extracted from template fitting in pp and PbPb (different centralities)
- **Similar conclusions** for different jet charge parameters (track p_T cut, κ)
Jet R_{AA}: jet radius scan

Jet R_{AA} as a function of jet p_T and radius

- First measurement up to $R = 1.0$
- Advanced experimental techniques
 - Novel underlying event subtraction technique
 - Unfolding

\hat{R}

\hat{R}

Pythia

Pythia+Hydjet 0-10%

$|\eta| < 1$

$0.3 < p_T < 3.0$ GeV

Event centrality: 13.5%-14.0%

< 3.0 GeV

CMS = 5.02 TeV, PbPb 2015 NNs

Preliminary
Jet R_{AA}: jet radius scan

Jet R_{AA} as a function of jet p_T and radius

- First measurement up to $R = 1.0$
- Competing effects for wide jets (suppression vs recovery of quenched energy)
- New constraints on jet quenching models

$\sqrt{s_{NN}} = 5.02$ TeV, PbPb 404 μb$^{-1}$, pp 27.4 pb$^{-1}$

CMS Preliminary

$R = 0.2$

$R = 0.3$

$R = 0.4$

$R = 0.6$

$R = 0.8$

$R = 1.0$
Using photons and Z bosons as unmodified references

- Z bosons and their decay products do not interact with the QGP
- They can be used as a reference for recoiling charged particles
- Study angular correlations, jet fragmentation, ...
- Example: jet shape in photon-tagged events

\[\rho_{\text{PbPb}}(r) / \rho_{\text{pp}}(r) \]

CMS Supplementary

- Cent. 0 - 10%
- \(\sqrt{s_{\text{NN}} = 5.02 \text{ TeV}} \)
- \(p^+_T > 60 \text{ GeV/c} \)
- PbPb 404 \(\mu b^{-1} \)
- anti-\(k_T \) jet \(R = 0.3 \)
- pp 27.4 \(\mu b^{-1} \)
- \(p^+_T > 30 \text{ GeV/c}, \Delta \phi_{j\gamma} > \frac{7\pi}{8} \)
Z-hadron correlations

- Very small signal! Only a few recoiling tracks
- Significant modifications in azimuthal angle distributions
- Also measured: fragmentation functions, hadron p_T spectra
Radial profile of D^0 mesons in jets

- Hint of wider distribution in PbPb than pp at low p_T
- Charm quark diffusion with respect to the jet axis
Beauty: b-jet shapes in pp

CMS Preliminary

pp 27.4 pb\(^{-1}\) (5.02 TeV)

b jets/inclusive jets

- Data
- PYTHIA 6

- anti-\(k_T\) PF jet (\(\Delta R=0.4\))
- \(p_T^{\text{jet}} > 120\) GeV, \(|\eta_{\text{jet}}| < 1.6\)
- \(p_T^{\text{trk}} > 1\) GeV

\[\rho(\Delta r_b)/\rho(\Delta_{\text{incl}})\]

b-jet shapes in pp:

- Different shape with respect to inclusive jets
- Imperfectly reproduced in PYTHIA
- Flavour dependence in parton fragmentation
The top quark:

- Top quarks decay well before QGP is formed
- nPDF: probing high-x gluons
- With more data: probing the formation time of the QGP
New probe: top quarks

Focusing on the dilepton channel: clean final state

- **Two opposite-sign leptons**
 - Unaffected by the QGP
 - Most of the sensitivity from $e\mu$ final state (reduced Drell–Yan background)
 - Additional sensitivity from ee and $\mu\mu$ (excluding the Z mass region)

- **Two high-p_T b jets**
 - Analysis repeated with and without b jet information
 - Balance robustness and sensitivity

- **“Blind” analysis**: analysis techniques developed using only 1/3 of the full dataset

Top Pair Branching Fractions

- $\tau + \tau$: 1%
- $\tau + \mu$: 2%
- $\tau + e$: 2%
- $\mu + \mu$: 1%
- $\mu + e$: 2%
- $e + e$: 1%
- $e + \text{jets}$: 15%
- $\mu + \text{jets}$: 15%
- $\tau + \text{jets}$: 15%
- "alljets": 46%
- "lepton+jets"
- "dileptons"
New probe: top quarks

Di-lepton multivariate analysis

4.0 σ: strong evidence!

Also b-jet counting

CMS Preliminary

$1.7 \text{ nb}^{-1} (\sqrt{s_{NN}} = 5.02 \text{ TeV})$

$e\mu$

Data

tt

VV

tW

Nonprompt

Z/γ^*

Total unc.

E. Chapon (IHEP-Beijing)

Hard and rare probes

LHCP 2020
New probe: top quarks

Measured cross section consistent with pQCD expectation
Large data samples from LHC Run 2 give access to rarer probes and higher precision

- Jet charge
- Large R jets
- Z-hadron correlations
- Heavy flavour
- Top quarks

⇒ new and better ways to study the QGP properties

More recent CMS results

- Publications: [link](https://cern.zoom.us/j/98761185709)
- Preliminary results: [link](https://cern.zoom.us/j/98761185709)