Recent results on hard and rare probes with ALICE May 25-30, 2020

Alena Gromada for the ALICE Collaboration

8th Edition of the Large Hadron Collider Physics Conference

25 May 2020

ZUKUNFT SFIT 1386

Hard and rare probes in ... ALICE **Pb-Pb** Quarkonia **Open heavy flavors Jets** (Re)generation Hadronization and suppression Degree of heavy-flavor Parton energy loss thermalization

J.

3

Hard and rare probes in ... **Pb-Pb** Quarkonia

ALICE

Heavy-flavor in pp collisions

- Charmed baryons in pp collisions at
- $\sqrt{s} = 13 \text{ TeV} \longrightarrow$ Highest energy \rightarrow Highest multiplicity
- Charmonia in pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- Dielectron continuum in pp collisions at $\sqrt{s} = 5.02 \text{ TeV}$

ALICE detector

ALI-PREL-336359

ALI-PREL-3364

- Λ_c^{+} and D^o production enhanced in higher multiplicity events
- Λ_c^+/D^0 ratio:
 - · Ratio increases with multiplicity
 - \rightarrow hints that difference between charm fragmentation to Λ_c^+ and D⁰ evolves with multiplicity
 - PYTHIA Monash tuned on e⁺e⁻ underestimates measurement
 - PYTHIA with Color Reconnection (CR) beyond Leading Color (LC) agrees with higher multiplicity class

- Λ_c^+/D^0 ratio smoothly evolves as function of multiplicity when including p–Pb and Pb–Pb collisions
 - → multiplicity matters

Effect of Σ_c feed-down on Λ_c^+/D^0 ?

 $\Sigma_c^0 \rightarrow \Lambda_c^+ (\rightarrow p^+ \pi^+ K^-) \pi^- + \text{ c.c.}$ $\Sigma_{c}^{++} \rightarrow \Lambda_{c}^{+} (\rightarrow p^{+}\pi^{+}K^{-})\pi^{+} + \text{ c.c.}$ π^+ Secondary vertex Primary vertex π

- Models:
 - PYTHIA Monash: tuned on e⁺e⁻
 - PYTHIA CR beyond LC
 - Mode 0: no time dilation constraints, Mode 2: dipoles involved in CR causally connected, Mode 3: single connection causally connected
 - Models do no not describe the data
- How does feed-down affect Λ_c^+/D^0 ?
 - Fraction of $\Lambda_{_{\!\!C}}^{^{\,+}} \text{originates from } \Sigma_{_{\!\!C}}^{^{\,0,+,++}}$ feed-down

ALI-PREL-344724

- Fraction of $\Lambda_{_{\!\!\!\!c}}^{^{\,+}} \text{originates from } \Sigma_{_{\!\!\!c}}^{^{\,0,+,++}}$ feed-down
- $\Sigma_{\rm c}^{0,+,++}/{\rm D}^0$ has similar $p_{\rm T}^{-}$ dependency as $\Lambda_{\rm c}^{+}/{\rm D}^0$
 - $\rightarrow \Sigma_{c}^{0,+,++}$ feed-down could explain part of the Λ_{c}^{+} enhancement in pp collisions
- $\Sigma_{c}^{0,+,++}/D^{0}$ in agreement with PYTHIA with CR beyond LC, underestimated by PYTHIA Monash
 - \rightarrow Charm fragmentation not well understood
- ALICE data can constrain charm fragmentation

$\Sigma_c^{0,+,++}/\Xi_c^{0,+}$ and $\Xi_c^{0,+}/D^0$ in pp collisions at $\sqrt{s} = 13$ TeV

- $\sum_{c}^{0,+,++}/\Xi_{c}^{0,+}$:
 - Reproduced by PYTHIA Monash \rightarrow Is almost identical mass of $\Sigma_c^{0,+,++}$ and $\Xi_c^{0,+}$ what matters?
- Similar p_{T} -dependency as Λ_{c}^{+}/D^{0}
 - → Breaking of baryon-fragmentation-function universality?
- Models underestimate measured ratios
 - Lowest- $p_{\rm T}$ data point 20-30 times higher than e⁺e⁻
 - M. He, R. Rapp: Statistical hadronization model with augmented set of charm-baryon states

\rightarrow Crucial to estimate $c \overline{c}$ cross section

• $\Xi_{c}^{0,+}/D^{0}$:

- Charm and beauty cross sections are obtained by PYTHIA6 and POWHEG doubledifferential fits to the dielectron continuum
 - $1.1 < m_{_{\rm PP}} < 2.7 \text{ GeV}/c^2 \text{ and } p_{_{\rm T}} < 8 \text{ GeV}/c$
- Results in agreement with measurement based on prompt D⁰ mesons
- Sensitive to production mechanisms from Monte Carlo generators
- Slope of the \sqrt{s} -dependence is described by FONLL calculation

J/ ψ vs. multiplicity in pp collisions at \sqrt{s} = 13 TeV: model comparison

Percolation: Phys. Rev. C86 (2012) 034903 CGC: Phys. Rev. D98 (2018) 074025

- J/ψ yield at mid-rapidity:
 - Increases faster than linear as function of multiplicity
 - Quantitatively described by models with different physics mechanisms
 - Coherent Particle Production (CPP)
 - Color Glass Condensate (CGC)
 - 3-Pomeron CGC
 - Increase of J/ψ yields in models arises from reduction of charged-particle multiplicity
- Models consider only prompt J/ψ contribution

- Predictions of PYTHIA with prompt component only underestimate slope of the trend of $p_{\rm T}$ -integrated J/ ψ yields
 - Closer to J/ψ yields when including feed-down from beauty-hadron decays
- Significant increase between $J/\psi p_T$ -intervals 0-4, 4-8 GeV/c
 - Result of auto-correlation mechanisms, like jet or beauty-quark fragmentation?

- Forward rapidity:
 - J/ ψ yield shows slower increase than at mid-rapidity \rightarrow Possible bias due to auto-correlation for J/ ψ at multiplicity in same acceptance?
 - Ratio of $\psi(2S)$ to J/ ψ yields hints that J/ ψ production might increase faster with multiplicity

Conclusions

- Comparisons of charmed **baryon/meson** and **baryon/baryon** to the models:
 - \rightarrow Breaking of baryon-fragmentation-function universality
 - \rightarrow Implications on $C\overline{C}$ cross section estimate
- Dielectrons:
 - \rightarrow Constraining beauty and charm cross sections
- Multiplicity dependent measurements:
 - $\rightarrow \Lambda_c^+/D^0$ in agreement with PYTHIA with CR beyond LC for higher multiplicity class
 - → Charmonium multiplicity dependence waiting for clearer physics interpretations (J/ψ at mid-rapidity: Effect of feed-down? Auto-correlation? Reduction of event multiplicity?)

Zoom meeting room: https://cern.zoom.us/j/9713538810?pwd=TEJOMFhuNnMySmhnUVIxSWNnZ3Bldz09

Outlook: Run 3 + Run 4

- Major upgrades of ALICE apparatus
 - Readout rate increases → Pb–Pb minimum-bias data sample by factor 50-100 larger
 - Mid-rapidity: tracking resolution at low $p_{\rm T}$ improves by factor of 3
 - Forward-rapidity: newly secondary vertex reconstruction
 - Heavy-flavor production measurements with higher precision down to $p_{T} = 0 \text{ GeV}/c$
 - Total charm cross section
 - Multi-differential measurements
 - Better separation of prompt and non-prompt components

Λ_c^+/D^0 spectra in pp collisions at \sqrt{s} = 13 TeV: multiplicity dependence

• Λ_{c}^{+}/D^{0} :

· Ratio increases with multiplicity

ALI-PREL-336414

- Models:
 - PYTHIA Monash: tuned on e⁺e⁻
 - PYTHIA CR beyond LC
 - M. He, R. Rapp: Statistical hadronization model with augmented set of charm-baryon states

$\Xi_{c}^{0,+}/\Lambda_{c}^{+}$ in pp collisions at $\sqrt{s} = 13$ TeV

• $\Xi_{c}^{0,+}/\Lambda_{c}^{+}$ underestimated by PYTHIA CR beyond LC approx. and PYTHIA Monash

Baryon/meson and baryon/baryon compared to models in pp collisions at \sqrt{s} = 13 TeV

• Baryon/meson and baryon/baryon ratios compared to models:

Consistent with:	PYTHIA with CR beyond LC approx.	PYTHIA Monash
Λ_{c}^{+}/D^{0} in multiplicity interval [34.1-52.5]	Yes	No
Ξ_{c}^{0}/D^{0}	No	No
$\Sigma_{c}^{0,+,++}/D^{0}, \Lambda_{c}^{+}(\leftarrow \Sigma_{c}^{0,+,++})/D^{0}$	Yes	No
$\Sigma_{c}^{0,+,++}/\Lambda_{c}^{+}, \Lambda_{c}^{+}(\leftarrow \Sigma_{c}^{0,+,++})/\Lambda_{c}^{+}$	No	No
$\sum_{c}^{0,+,++}/\Xi_{c}^{0}$	No	Yes

Heavy-flavor cross sections in pp collisions at $\sqrt{s} = 5.02$ TeV

ALICE