

Recent results on collectivity in small systems from ALICE

Zhanna Khabanova on behalf of the ALICE Collaboration

Collectivity in heavy-ion collisions

Heavy-ion collisions

- study properties of quark-gluon plasma (QGP)
- QGP evolution is described by hydrodynamics
- radial flow: characterised by collective average transverse velocity <β_T>

Collectivity in heavy-ion collisions

Heavy-ion collisions

- study properties of quark-gluon plasma (QGP)
- QGP evolution is described by hydrodynamics
- radial flow: characterised by collective average transverse velocity <β_T>
- anisotropic flow: characterised by final state momentum anisotropy

Collectivity in heavy-ion collisions

Heavy-ion collisions

- study properties of quark-gluon plasma (QGP)
- QGP evolution is described by hydrodynamics
- radial flow: characterised by collective average transverse velocity $\langle \beta_{\tau} \rangle$
- anisotropic flow: characterised by final state momentum anisotropy

ALICE Coll. PLB 708 (2012) 249 ALI-PUB-14107

Small systems (old picture)

- p-A and pp collisions
- medium-free reference to disentangle cold nuclear matter effects from QGP

Small systems (old picture)

- p-A and pp collisions
- medium-free reference to disentangle cold nuclear matter effects from QGP

change of paradigm

Small systems (old picture)

- p-A and pp collisions
- disentangle cold nuclear matter effects from QGP

Small systems (new picture)

medium-free reference to

- are these observations a manifestation of collectivity? ("long-range multi-particle correlations")
- what is the origin of collectivity in small systems?
- down to which multiplicity do we see it?

ALI-PREL-319153

ALICE Coll. PLB 719 (2013) 29-41

Small systems (old picture)

- p-A and pp collisions
- disentangle cold nuclear matter effects from QGP

Small systems (new picture)

medium-free reference to

- are these observations a manifestation of collectivity? ("long-range multi-particle correlations")
- what is the origin of collectivity in small systems?
- down to which multiplicity do we see it?

initial state (IS): initial momentum correlations

- at nucleonic level (Glauber model)
- at sub-nucleonic lèvel (CGC-based IP-Glasma model)

final state (FS): *final state correlations*

- at macroscopic level -> driven by pressure gradients (MUSIC, EPOS-LHC)
 - at microscopic level -> due to other mechanisms such as string recombination (color reconnection in PYTHIA8, rope hadronization in DIPSY, cluster hadronization in HERWIG7)

both: hybrid models (IP-Glasma+MUSIC+UrQMD, AMPT)

provide more measurements to constrain models

Results: long-range angular correlations in p-Pb and pp collisions using FMD

Results: long-range angular correlations in p-Pb and pp collisions using FMD

- ALICE Forward Multiplicity Detector (FMD)
- allows measurement up to Δη ~ 8
- unique measurement at the LHC

Results: long-range angular correlations in p-Pb and pp collisions using FMD

- ALICE Forward Multiplicity Detector (FMD)
- allows measurement up to $\Delta \eta \sim 8$
- unique measurement at the LHC

- ridge extends up to:
 - $\Delta \eta \sim 8$ in p-Pb
 - $\Delta \eta \sim 6$ in pp

Results: $v_2(\eta)$ in p-Pb collisions for charged particles using FMD

- data in p-Pb compared with predictions from AMPT with string melting
- v₂(η)* is asymmetric similar to the trend of charged particle multiplicity
- AMPT successfully reproduces asymmetry of v₂(η), but not the multiplicity dependence

^{*}η in the laboratory system

Results: $v_2(\eta)$ in pp collisions for charged particles using FMD

- new result of v₂(η) in high-multiplicity pp collisions
- three curves correspond to the results with different non-flow subtraction methods

Results: multiplicity and system size dependence of v_n{m} for charged particles

IP-Glasma + hydrodynamics + UrQMD: PLB 772 (2017) 681 PYTHIA8 Monash: Eur.Phys.J.C 74 (2014) 8, 3024

Results: multiplicity and system size dependence of $v_n\{m\}$ for charged particles

collectivity: "long-range multi-particle correlations"

 v_n{2}_{sub}: long-range correlations shared by two particles

IP-Glasma + hydrodynamics + UrQMD: PLB 772 (2017) 681 PYTHIA8 Monash: Eur.Phys.J.C 74 (2014) 8, 3024

Results: multiplicity and system size dependence of $v_n\{m\}$ for charged particles

collectivity: "long-range multi-particle correlations"

- $v_n\{2\}_{sub}$: long-range correlations shared by two particles
- v_n{2} in small systems are compatible with large systems at low N_{ch}

IP-Glasma + hydrodynamics + UrQMD: PLB 772 (2017) 681 PYTHIA8 Monash: Eur.Phys.J.C 74 (2014) 8, 3024

Results: multiplicity and system size dependence of v_n{m} for charged particles

collectivity: "long-range multi-particle correlations"

- v_n{2}_{sub}: long-range correlations shared by two particles
- v_n{2} in small systems are compatible with large systems at low N_{ch}
- pp data can not be described solely by non-flow (PYTHIA8)
- hydro with IS (IP-Glasma+MUSIC+UrQMD)
 reproduces data quite well in Pb-Pb and Xe-Xe
 (except v₂{2} at low N_{ch}) and qualitatively in p-Pb,
 but not in pp collisions

IP-Glasma + hydrodynamics + UrQMD: PLB 772 (2017) 681 PYTHIA8 Monash: Eur.Phys.J.C 74 (2014) 8, 3024

Results: multiplicity and system size dependence of v_n{m} for charged particles

collectivity: "long-range multi-particle correlations"

- $v_2{4}_{3-sub} \sim v_2{6}$: genuine long-range multiparticle correlations persist down to very low multiplicities
- hard to conclude if origin of correlations is the same as in heavy-ion collisions based only on v_n measurements

$$B(\Delta \eta, \Delta \phi) = \frac{1}{2} \left[C_{+,-} + C_{-,+} - C_{+,+} - C_{-,-} \right]$$

$$C(\Delta \eta, \Delta \varphi) = \frac{I}{N_{trig}} \frac{d^{2}N_{assoc}}{d\Delta \eta d\Delta \varphi} = \frac{S}{f}$$

$$S = \frac{1}{N_{trig}} \frac{d^{2}N_{assoc,same}}{d\Delta \eta d\Delta \varphi} \quad f = \alpha \frac{d^{2}N_{assoc,mixed}}{d\Delta \eta d\Delta \varphi}$$

 balance function reflects the charge-dependent part of angular correlations -> anisotropic flow effects are removed

$$B(\Delta \eta, \Delta \phi) = \frac{1}{2} \left[C_{+,-} + C_{-,+} - C_{+,+} - C_{-,-} \right]$$

$$C(\Delta \eta, \Delta \varphi) = \frac{1}{N_{trig}} \frac{d^2 N_{assoc}}{d\Delta \eta d\Delta \varphi} = \frac{S}{f}$$

$$S = \frac{1}{N_{trig}} \frac{d^2 N_{assoc,same}}{d\Delta \eta d\Delta \varphi} \quad f = \alpha \frac{d^2 N_{assoc,mixed}}{d\Delta \eta d\Delta \varphi}$$

balance function reflects the charge-dependent part of angular correlations -> anisotropic flow effects are removed

$$B(\Delta \eta, \Delta \phi) = \frac{1}{2} \left[C_{+,-} + C_{-,+} - C_{+,+} - C_{-,-} \right]$$

$$C(\Delta \eta, \Delta \varphi) = \frac{1}{N_{trig}} \frac{d^2 N_{assoc}}{d\Delta \eta d\Delta \varphi} = \frac{S}{f}$$

$$S = \frac{1}{N_{trig}} \frac{d^2 N_{assoc,same}}{d\Delta \eta d\Delta \varphi} \quad f = \alpha \frac{d^2 N_{assoc,mixed}}{d\Delta \eta d\Delta \varphi}$$

balance function reflects the charge-dependent part of angular correlations -> anisotropic flow effects are removed

$$B(\Delta \eta, \Delta \phi) = \frac{1}{2} \left[C_{+,-} + C_{-,+} - C_{+,+} - C_{-,-} \right]$$

$$C(\Delta \eta, \Delta \varphi) = \frac{1}{N_{trig}} \frac{d^2 N_{assoc}}{d\Delta \eta d\Delta \varphi} = \frac{S}{f}$$

$$S = \frac{1}{N_{trig}} \frac{d^2 N_{assoc, mixed}}{d\Delta \eta d\Delta \varphi} \int_{\Phi} f = \alpha \frac{d^2 N_{assoc, mixed}}{d\Delta \eta d\Delta \varphi}$$

- balance function reflects the charge-dependent part of angular correlations -> anisotropic flow effects are removed
- balance function width narrowing with increasing multiplicity attributed to the radial flow effect in heavy-ion collisions

ALICE Coll. Eur. Phys. J. C 76 (2016) 86

$$B(\Delta \eta, \Delta \phi) = \frac{1}{2} \left[C_{+,-} + C_{-,+} - C_{+,+} - C_{-,-} \right]$$

$$C(\Delta \eta, \Delta \varphi) = \frac{I}{N_{trig}} \frac{d^2 N_{assoc}}{d\Delta \eta d\Delta \varphi} = \frac{S}{f}$$

$$S = \frac{1}{N_{trig}} \frac{d^2 N_{assoc,same}}{d\Delta \eta d\Delta \varphi} \quad f = \alpha \frac{d^2 N_{assoc,mixed}}{d\Delta \eta d\Delta \varphi}$$

- balance function reflects the charge-dependent part of angular correlations -> anisotropic flow effects are removed
- balance function width narrowing with increasing multiplicity attributed to the radial flow effect in heavy-ion collisions
- similar trend observed in smaller systems for charged particles

ALICE Coll. Eur. Phys. J. C 76 (2016) 86

$$B(\Delta \eta, \Delta \phi) = \frac{1}{2} \left[C_{+,-} + C_{-,+} - C_{+,+} - C_{-,-} \right]$$

$$\begin{split} C(\Delta\eta,\Delta\varphi) &= \frac{1}{N_{trig}} \frac{d^2N_{assoc}}{d\Delta\eta d\Delta\varphi} = \frac{S}{f} \\ S &= \frac{1}{N_{trig}} \frac{d^2N_{assoc,same}}{d\Delta\eta d\Delta\varphi} \quad f = \alpha \frac{d^2N_{assoc,mixed}}{d\Delta\eta d\Delta\varphi} \end{split}$$

- balance function reflects the charge-dependent part of angular correlations -> anisotropic flow effects are removed
- balance function width narrowing with increasing multiplicity attributed to the radial flow effect in heavy-ion collisions
- similar trend observed in smaller systems for charged particles
- PYTHIA8 with color reconnection qualitatively describes pp data
- identified hadrons: narrowing should be more pronounced for heavier particles if driven by collective phenomena in small systems

PYTHIA8 Monash: Eur.Phys.J.C 74 (2014) 8, 3024

$$B(\Delta \eta, \Delta \phi) = \frac{1}{2} \left[C_{+,-} + C_{-,+} - C_{+,+} - C_{-,-} \right]$$

$$C(\Delta \eta, \Delta \varphi) = \frac{1}{N_{trig}} \frac{d^2 N_{assoc}}{d\Delta \eta d\Delta \varphi} = \frac{S}{f}$$

$$S = \frac{1}{N_{trig}} \frac{d^2 N_{assoc,same}}{d\Delta \eta d\Delta \varphi} \quad f = \alpha \frac{d^2 N_{assoc,mixed}}{d\Delta \eta d\Delta \varphi}$$

- protons show almost flat dependence, but narrowing can not be excluded within the current uncertainties
- balance function width results for identified hadrons in pp collisions disfavor color reconnection mechanism implemented in PYTHIA8

PYTHIA8 Monash: Eur.Phys.J.C 74 (2014) 8, 3024

Results: p_T spectra of light-flavor hadrons in p-Pb collisions at $\sqrt{s} = 8.16$ TeV

- qualitatively similar behavior as in Pb-Pb driven by radial flow
- hardening of p_T spectra at higher multiplicity

pp at 13 TeV: ALICE Coll. CERN-EP-2020-024, CERN-EP-2019-168

pp at 7 TeV: ALICE Coll. Phys. Rev. C 99, 024906

p-Pb at 5.02 TeV: ALICE Coll. Phys. Lett. B 728 (2014) 25-38

lowest multiplicity

- enhancement at intermediate $p_{\scriptscriptstyle T}$
- consistent with radial flow, but also with quark coalescence at hadronization
- striking similarity in the trend across all systems

- enhancement at intermediate $p_{\scriptscriptstyle T}$
- consistent with radial flow, but also with quark coalescence at hadronization
- striking similarity in the trend across all systems

- enhancement at intermediate $p_{\scriptscriptstyle T}$
- consistent with radial flow, but also with quark coalescence at hadronization
- striking similarity in the trend across all systems

- enhancement at intermediate $p_{\scriptscriptstyle T}$
- consistent with radial flow, but also with quark coalescence at hadronization
- striking similarity in the trend across all systems

- enhancement at intermediate $p_{\scriptscriptstyle T}$
- consistent with radial flow, but also with quark coalescence at hadronization
- striking similarity in the trend across all systems
- smooth multiplicity evolution from pp to Pb-Pb -> common mechanism driving multiplicity dependence
- further support for collective effects in small systems

ALICE Coll. Phys. Rev. C99, 024906 (2019)

- PYTHIA8 is successful in describing the qualitative features only if CR is enabled
- HERWIG7 is not able to reproduce the trend
- DIPSY is able to get the qualitative trend but not the absolute values
- EPOS-LHC is successful in reproducing data at low $p_{\rm T}$, but overestimates the intermediate $p_{\rm T}$

PYTHIA8 Monash: Eur.Phys.J.C 74 (2014) 8, 3024 DIPSY: JHEP 0701:012,2007, JHEP 08 (2011) 103 EPOS-LHC: Phys. Rev. C 92, 034906 (2015) HERWIG7: Eur.Phys.J.C 76 (2016) 4, 196

ALICE Coll. Phys. Rev. C99, 024906 (2019)

- PYTHIA8 is successful in describing the qualitative features only if CR is enabled
- HERWIG7 is not able to reproduce the trend
- DIPSY is able to get the qualitative trend but not the absolute values
- EPOS-LHC is successful in reproducing data at low $p_{\rm T}$, but overestimates the intermediate $p_{\rm T}$

PYTHIA8 Monash: Eur.Phys.J.C 74 (2014) 8, 3024 DIPSY: JHEP 0701:012,2007, JHEP 08 (2011) 103 EPOS-LHC: Phys. Rev. C 92, 034906 (2015) HERWIG7: Eur.Phys.J.C 76 (2016) 4, 196

L. Bianchi: Soft probes (May 27, 14:00)

Results: heavy-flavor particle yield ratios

similar trend in LF and HF sectors

Results: heavy-flavor particle yield ratios

- similar trend in LF and HF sectors
- G.M. Innocenti: Heavy flavor and quarkonia (May 27, 13:30)
- V. Zaccolo: Soft QCD (May 26, 18:00)
- A. Harlenderova: Recent results on hard and rare probes from ALICE (May 25, 15:36)

Conclusions

- similar behavior attributed to collectivity in heavy-ion collisions is seen in many observables in small systems down to very low multiplicities
- most of the times existing models do not fully reproduce the data in small systems
- understanding the origin of collectivity in small collision systems remains a challenging task

Conclusions

- similar behavior attributed to collectivity in heavy-ion collisions is seen in many observables in small systems down to very low multiplicities
- most of the times existing models do not fully reproduce the data in small systems
- understanding the origin of collectivity in small collision systems remains a challenging task

THANK YOU FOR YOUR ATTENTION!

Back up

Angular correlations: per-trigger yield extraction

$$C(\Delta \eta, \Delta \varphi) = \frac{1}{N_{trig}} \frac{d^2 N_{assoc}}{d\Delta \eta d\Delta \varphi} = \frac{S}{f}$$

$$S = \frac{1}{N_{trig}} \frac{d^2 N_{assoc,same}}{d\Delta \eta d\Delta \phi} \quad f = \alpha \frac{d^2 N_{assoc,mixed}}{d\Delta \eta d\Delta \phi}$$

- trigger particle: **p**_{T,trig}
- assossiated particle: $p_{T,ass}$
- the associated per-trigger yield as a function of $\Delta \varphi$, $\Delta \eta$
- $\Delta \varphi = \varphi_{\text{trig}} \varphi_{\text{assoc}}$, $\Delta \eta = \eta_{\text{trig}} \eta_{\text{assoc}}$

 a key feature related to collectivity in A-A: the "near-side ridge" - an enhanced structure on the near side

Anisotropic flow coefficients

azimuthal correlations

Multiplicity dependence of pseudorapidity density distributions in p-Pb and pp collisions

Long-range angular correlations in peripheral p-Pb and MB pp collisions using FMD

no significant ridge structure is observed in peripheral events in p-Pb (MB in pp) where non-flow is assumed to be the dominant effect

$v_2(\eta)$ in Pb-Pb, p-Pb and pp collisions for charged particles using FMD

 values of v₂(η) are comparable between p-Pb and Pb-Pb at the same multiplicity at forward η

ALICE Coll. Phys.Lett.B 762 (2016) 376-388

v₂(η) extraction in p-Pb collisions for charged particles using FMD

$$v_{2,\eta_{A}}\{2PC,sub\} = \sqrt{\frac{V_{2,\Delta\eta = \eta_{A} - \eta_{B}}\{2PC,sub\}V_{2,\Delta\eta = \eta_{A} - \eta_{C}}\{2PC,sub\}}{V_{2,\Delta\eta = \eta_{B} - \eta_{C}}\{2PC,sub\}}}$$

$$v_{n,FMD1,2} = \sqrt{\frac{V_{n}(\eta_{TPC},\eta_{FMD1,2})V_{n}(\eta_{FMD1,2},\eta_{FMD3})}{V_{n}(\eta_{TPC},\eta_{FMD3})}}$$

$v_2(\eta)$ extraction in pp collisions for charged particles using FMD

Template fit method (ATLAS)

$$Y^{\text{templ}}(\Delta\phi) = Y^{\text{ridge}}(\Delta\phi) + F Y^{\text{periph}}(\Delta\phi)$$
$$Y^{\text{ridge}}(\Delta\phi) = G\left(1 + \sum_{n=2}^{\infty} 2v_{n,n}\cos(n\Delta\phi)\right)$$

 residual non-flow is smaller compared to ZYAM with MB subtraction

$v_2(\eta)$ extraction in pp collisions for charged particles using FMD

ZYAM with low multiplicity (MB) subtraction

Alternative template fit (template ZYAM)

$$Y^{\text{periph}}(\Delta \phi) = Y^{\text{periph}}(\Delta \phi) - Y^{\text{periph}}(0)$$

Contribution of initial state effects in models

Phys.Lett.B 803 (2020) 135322

- Initial momentum anisotropy (gluon momentum flow) dominant in small systems
- Initial spatial anisotropy (sub-nucleon fluctuations) dominant in large systems

p_T spectra and mean p_T in Pb-Pb, p-Pb and pp collisions

Light-flavor particle yield ratios

ALICE Collaboration, Phys. Rev. Lett. 111 (2013) 222301

- Feature of the bulk (not arising from jets)
- EPOS reproduces the data reasonably well
- Recombination model describes the data at intermediate p_T but overestimates it at low p_T