Probes of pQCD with vector bosons, photons and jets at ATLAS

Marjorie Shapiro on behalf of the ATLAS collaboration

26 May 2020

LHCP-2020

Outline

Measurements presented here focus on two topics:

- Heavy Flavor production in association with Z-bosons
 - $Z+\geq 1$ and ≥ 2 $b-{
 m jet}$ cross sections and differential distributions
- Measurement of isolated-photon plus two-jet production
 - Distributions for direct and fragmentation enhanced regions
 - $\,\blacktriangleright\,$ Angular correlations and invariant mass distributions for jj , γj and γjj

Additional measurements presented in other QCD sessions:

- Precision probes of jet substructure
 - see Matt LeBlanc Wed 15:21
- $Z \to \ell^+ \ell^-$ cross section and p_T Distribution
 - ► see Alexis Vallier Mon 15:00

b-Jet production in association with Z bosons

arXiv:2003.11960

- Z + b-jet production important test of pQCD
- Calculations to NLO accuracy
- Both 4 and 5 flavor number scheme (FNS) approaches available
 - ▶ 5FNS uses initial b-quark PDF: massless b
 - ▶ 4FNS b-quarks from gluon splitting: massive b possible
- Benchmark process for testing performance of MC generators
- Important background to many BSM searches
- Compare performance of calculations in both schemes and for different generators
 - ▶ Both ≥ 1 and ≥ 2 tagged b-jet selections
 - Unfolded differential distributions for a large number of kinematic variables
- Show only subset of available distributions here

Z + b-jet Fiducial Cross Sections

Fiducial region:

arXiv:2003.11960

- $p_T^{\ell} > 27 \text{ GeV}$
- $|\eta^{\ell}| < 2.5$
- $m_{\ell\ell} = 91 \pm 15 \text{ GeV}$
- ▶ p_T b-jet > 20 GeV
- ▶ |y| b-jet < 2.5
- $\Delta(Rb jet, \ell) > 0.4$
- MC Configurations:

Generator	N _{max}		FNS	PDF	Parton
	NLO	LO		set	Shower
Z+jets (including Z+b and Z+bb)					
SHERPA 5FNS (NLO)	2	4	5	NNPDF3.0nnlo	Sherpa
SHERPA FUSING 4FNS+5FNS (NLO)	2	3	5 (*)	NNPDF3.0nnlo	SHERPA
Alpgen + Py6 4FNS (LO)	-	5	4	CTEQ6L1	Рутніа v6.426
ALPGEN + Py6 (rew. NNPDF3.0lo)	-	5	4	NNPDF3.0lo	PYTHIA v6.426
MGAMC + Py8 5FNS (LO)	-	4	5	NNPDF3.0nlo	PYTHIA v8.186
MGAMC + Py8 5FNS (NLO)	1	-	5	NNPDF3.0nnlo	Pythia v8.186
Z+bb					
SHERPA ZBB 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	SHERPA
MGAMC + Py8 ZBB 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	PYTHIA v8.186

Observations:

- ▶ 4FNS underestimates $\sigma(Z+ \geq 1b)$ but is consistent with data for $\sigma(Z+ \geq 2b)$
- ▶ 5FNS predicts σ in both regions

$Z+ \geq 1$ b-jet kinematic distributions

arXiv:2003.11960

$Z+ \geq 2$ b-jet kinematic distributions

arXiv:2003.11960

Z + b-jets: Summary of Observations

- In general, 5FNS NLO calculations predict inclusive cross section, while 4FNS LO underestimate rate
- \bullet Multi-leg calculations model region of large p_T^b better than NLO+PS
- SHERPA NLO 5FNS with up to two partons at NLO merged with up to 4 partons at LO describes most differential distributions within experimental uncertainties
- All generators disagree with data at large m_{bb}

Photon+2 jet Production

- Prompt photon + two-jet production a rich system to test pQCD
- Angular correlations between final state objects probe dynamics of hard scattering
- Two production mechanisms at LO (doesn't factorize at NLO)
 - Photons from the hard scatter
 - ► Photons from fragmentation

$\gamma + 2$ -jet definition of fiducial regions

JHEP 03 (2020) 179

- Fiducial requirements:
 - $ightharpoonup E_T^{\gamma} > 150 \text{ GeV}$
 - $|\eta^{\hat{\gamma}}| < 2.37 \text{ (exclude } (1.3 < |\eta^{\gamma}| < 1.56)$
 - $\qquad \qquad E_T^{iso} < 0.0042 \cdot E_T^{\gamma} + 10 \text{ GeV}$
 - ▶ $p_T^{jet} > 100 \text{ GeV}$
 - $y^{\bar{j}et} < 2.5$
 - $\qquad \Delta R^{\gamma-jet} > 0.8$
- Comparison with 3 predictions:
 - ► PYTHIA 8.186 (LO) with LO NNPDF2.3 pdf
 - SHERPA 2.1.1 (merged LO; $2 \rightarrow n, \ n=2-5$ with NLO CT10 pdf
 - ► SHERPA 2.2.2 (merged $\gamma + (1, 2)$ -jets at NLO and $\gamma + (3, 4)$ -jets at LO) with NNLO NNPDF3.0 pdf
- LO calculations displayed with k-factors
- Filled bands: NLO theoretical uncertainty

- Can identify regions where direct and fragmentation contributions are enhanced
- Fragmentation enrichred region: $E_T^{\gamma} < E_T^{jet2}$
- Direct enrichred region: $E_T^{\gamma} > E_T^{jet1}$

Photon+2 jet Summary of Results

- Measured distributions in direct and fragmentation enhanced regions exhibit features expected from the two underlying processes
- Tree level LO Sherpa gives a good description of shape of data except at high E_T^{γ} , $|\Delta y^{jj}|$ and $m^{\gamma jj}$
- PYTHIA8 (where sub-leading jet originates from parton shower) does not describe the distributions well
- NLO Sherpa describes data adequately both in shape and normalization except at high E_T^{γ} , $|\Delta y^{jj}|$ and $m^{\gamma jj}$
 - ► Although LO SHERPA reproduces the shapes better
- Theoretical uncertainties rather than experimental ones dominate

Conclusions

- Recent ATLAS results on jets, photons and bosons probe pQCD with high precision
- $Z+\geq 1b$ -jet and $\geq 2b$ -jet kinematic distributions probe sensitivity of prediction to flavor number scheme
- Prompt photon + 2 jet measurements test NLO calculations in regions where direct and fragmenation photons dominate
- Ability of theoretical calculations and MC generators to model complex QCD systems is in general good, but some discrepancies with data remain
- Wide range of observables available to tune MC generators and to explore regions where theoretical calculation are difficult or problematic