Vector bosons plus jets at the LHC

Mathieu PELLEN

Cavendish Laboratory, University of Cambridge

LHCP 2020

Paris - France / Online

 26^{th} of May 2019

European Research Council

<u>LHC</u>: Great tool to probe fundamental interactions at high energies \rightarrow Great to measure jets and bosons leptons

- W $\rightarrow \ell \nu / q \bar{q}'$
- ${\rm Z}/\gamma
 ightarrow \ell^+ \ell^-/{\rm q}{ar {
 m q}}$

 \rightarrow Huge variety of pp \rightarrow Vs + jets processes with very different phenomenology!

Mathieu PELLEN

Vector bosons plus jets at the LHC

Outline:

Master formula:

 $pp \rightarrow Vs + jets$

• pp
$$\rightarrow$$
 Z + b
 \rightarrow NNLO QCD with mass effects

[Gauld, Gehrmann-De Ridder, Glover, Huss, Majer; 2005.03016]

• $pp \rightarrow W^+W^-j$ \rightarrow NLO QCD+EW with Parton shower

[Bräuer, Denner, MP, Schönherr, Schumann; 2005.12128]

• pp \rightarrow W⁺W⁺jj \rightarrow Full NLO [Biedermann, Denner, MP; 1708.00268]

Disclaimer: Not a review but a selection of some results

Mathieu PELLEN

Vector bosons plus jets at the LHC

• pp \rightarrow Z + b \rightarrow NNLO QCD with mass effects

[Gauld, Gehrmann-De Ridder, Glover, Huss, Majer; 2005.03016]

 ${\sf pp}
ightarrow {\sf Z} + \overline{{\sf b}}$ [Gauld, Gehrmann-De Ridder, Glover, Huss, Majer; 2005.03016],

• NNLO QCD in 5 flavour (5fs) combined with NLO QCD in 4 flavours (4fs) at $\mathcal{O}(\alpha_s^3 \alpha^2)$

$$\mathrm{d}\sigma^{\mathrm{FONLL}} = \mathrm{d}\sigma^{\mathrm{5fs}} + \left(\mathrm{d}\sigma^{\mathrm{4fs}}_{m_b} - \mathrm{d}\sigma^{\mathrm{4fs}}_{m_b \to 0}\right)$$

Allows to incorporate exact b-mass effects

• Flavoured jet in the final state

 \rightarrow Beyond NLO in QCD, flavoured jet algorithm required $_{[Banfi, \ Salam, \ Zanderighi; \ hep-ph/0601139]}$

ightarrow Modified $k_{
m T}$ algorithm to account for soft wide-angle q ${f q}$

- \rightarrow Infrared-safe definition of flavoured jet
- But experimental data [CMS; 1611.06507]
 - 1) reconstructed with anti- $k_{\rm T}$ algorithm
 - 2) flavour of these jets identified
- Unfolding procedure:

 \rightarrow Computation of non-perturbative correction to data using:

- 5fs at NLO QCD + PS
- 4fs at NLO QCD + PS

Fiducial cross section

• Applying non-perturbative correction to the data gives

 $\sigma_{\rm Fiducial, f\text{-}k_{\rm T}}^{\rm CMS} = 3.119 \pm 0.212^{+0.021}_{-0.032}\,\text{pb}$

• At $\mathcal{O}(\alpha_s^3)$, the FONLL prediction is

 $\sigma_{\rm Fiducial}^{\rm FONLL}(m_b^{\rm phys.}) = 3.477^{+0.081}_{-0.081}({\rm scales}) \ {\rm pb}$

<u>NB:</u> $\delta\sigma(PDF, \alpha_s) = \pm 0.074$ pb estimated at NLO

${ m pp} ightarrow { m Z} + { m b}$ [Gauld, Gehrmann-De Ridder, Glover, Huss, Majer; 2005.03016]

•
$$\chi^2/N_{dat}(\alpha_s^2, p_{T,b}) = 24.9/14$$

• $\chi^2/N_{dat}(\alpha_s^3, p_{T,b}) = 21.6/14$

• pp \rightarrow W⁺W⁻j \rightarrow NLO QCD+EW with Parton shower

[Bräuer, Denner, MP, Schönherr, Schumann; 2005.12128]

First measurement of pp \rightarrow W⁺W⁻j by ATLAS $_{[1608.03086]}$ \rightarrow Combined analysis of pp \rightarrow W⁺W⁻ and pp \rightarrow W⁺W⁻j \rightarrow Inclusion of jet veto

• Fixed-order analysis at NLO QCD+EW \rightarrow for off-shell pp $\rightarrow \mu^+ \nu_\mu e^- \bar{\nu}_e$

- \rightarrow for off-shell pp $\rightarrow \mu^+ \nu_\mu e^- \bar{\nu}_e j$
- Inclusive sample with:
 - merged predictions + PS + approximate EW corrections $\rightarrow pp \rightarrow \mu^+ \nu_\mu e^- \bar{\nu}_e + 0, 1j@NLO + 2, 3j@LO$

 \rightarrow Can be studied with $n_j = 0$ or $n_j = 1$

- Large QCD corrections: effect of the jet veto
- EW corrections: Sudakov logarithms

• Very large ratios between WWj and WW

• For multi-jet merged parton-shower: much more stable ratios

• pp \rightarrow W⁺W⁺jj \rightarrow Full NLO [Biedermann, Denner, MP; 1708.00268]

 $\mathsf{pp} \to \mathsf{W}^+ \mathsf{W}^+ \mathsf{jj}$ [Biedermann, Denner, MP; 1708.00268]

NLO contributions at $\mathcal{O}(\alpha^7)$, $\mathcal{O}(\alpha_s \alpha^6)$, $\mathcal{O}(\alpha_s^2 \alpha^5)$, and $\mathcal{O}(\alpha_s^3 \alpha^4)$

→ Order $\mathcal{O}(\alpha_s \alpha^6)$ and $\mathcal{O}(\alpha_s^2 \alpha^5)$: QCD and EW corrections mix → Meaningless distinction between EW signal and QCD background → Combined measurement!

$\mathsf{pp} ightarrow \mathsf{W}^+ \mathsf{W}^+ \mathsf{jj}$ [Biedermann, Denner, MP; 1708.00268]

- Different behaviour of the NLO corrections (normalised to the full LO)
- Large EW corrections: intrinsic feature of VBS at the LHC

[Biedermann, Denner, MP; 1611.02951]

Comparison with data

 \rightarrow Recent ss-WW and WZ analysis of CMS with 137 fb⁻¹_[2005.01173]:

Process	$\sigma \mathcal{B}$ (fb)	Th. pred.	Th. pred.
	()	10 (fb)	NI O (fb)
		LO (ID)	
E14(1404)	2 00 1 0 15	2 02 0 57	2 21 0 47
EVV VVVV	3.98 ± 0.45	3.93 ± 0.57	3.31 ± 0.47
	$0.37 \text{ stat} \pm 0.25 \text{ syst}$		
EW+QCD WW	4.42 ± 0.47	4.34 ± 0.69	3.72 ± 0.59
	0.20 stat \pm 0.25 stat		
	0.39 stat ± 0.23 syst		
EW WZ	1.81 ± 0.41	1.41 ± 0.21	1.24 ± 0.18
	$0.39 \text{ stat} \pm 0.14 \text{ syst}$		
	4.07 \ 0.46	4 54 0 00	4 36 0.00
EW+QCD WZ	4.97 ± 0.40	4.54 ± 0.90	4.30 ± 0.00
	$0.40 \text{ stat} \pm 0.23 \text{ syst}$		
QCD WZ	3.15 ± 0.49	3.12 ± 0.70	3.12 ± 0.70
	0.45 stat \pm 0.19 swat		
	0.45 Stat <u>+</u> 0.16 Syst		

 \rightarrow LO: MadGraph5_AMC@NLO+PYTHIA

 \rightarrow NLO: MaDGRAPH5_AMC@NLO+PYTHIA + NLO corr. from [Biedermann, Denner, MP; 1708.00268] or [Denner, Dittmaier, Maierhöfer, MP, Schwan; 1904.00882] but only to EW signal

NB: Uncertainty for the NLO numbers are from the LO 7-scales variation.

Very rich phenomenology of vector bosons plus jets!

• pp
$$\rightarrow$$
 Z + b
 \rightarrow NNLO QCD with mass effects

[Gauld, Gehrmann-De Ridder, Glover, Huss, Majer; 2005.03016]

•
$$pp \rightarrow W^+W^-j$$

 \rightarrow NLO QCD+EW with Parton shower

[Bräuer, Denner, MP, Schönherr, Schumann; 2005.12128]

• pp
$$\rightarrow$$
 W⁺W⁺jj
 \rightarrow Full NLO [Biedermann, Denner, MP; 1708.00268]

Thank you