Charged hadron distributions in \(Z \)-tagged jets

Sookhyun Lee on behalf of the LHCb collaboration

(University of Michigan, Ann Arbor)

LHCP 2020, Paris

May 27, 2020
A proton + proton collision

- (Initial state) Parton shower
- (Final state) Parton shower
- Hadronization
- Hadron decays
- Beam remnant
- Underlying event

Monte Carlo generator representation

Jet substructure/event shape

• Motivated mostly by search for new particles and BSM physics

• Within QCD, emphasis is on perturbative part of process, e.g.
 • Splitting functions,
 • Constraining α_s

• Theory revolutionized & experimental techniques developed in past decade, e.g.
 • Soft Collinear Effective Field Theory,
 • Sophisticated jet grooming algorithms

• Great opportunity to study hadronization processes!
Jet substructure/event shape

• Motivated mostly by search for new particles and BSM physics

• Within QCD, emphasis is on perturbative part of process, e.g.
 • Splitting functions,
 • Constraining α_s

• Theory revolutionized & experimental techniques developed in past decade, e.g.
 • Soft Collinear Effective Field Theory,
 • Sophisticated jet grooming algorithms

• Great opportunity to study hadronization processes!
Jet substructure/event shape

- Motivated mostly by search for new particles and BSM physics
- Within QCD, emphasis is on perturbative part of process, e.g.
 - Splitting functions,
 - Constraining α_s
- Theory revolutionized & experimental techniques developed in past decade, e.g.
 - Soft Collinear Effective Field Theory,
 - Sophisticated jet grooming algorithms
- Great opportunity to study hadronization processes!
Fragmentation functions (FF)

- Initially constructed in e^+e^-, where no parton distribution function (PDF) is needed, as a function of z, longitudinal momentum fraction of outgoing parton carried by final state hadrons: **collinear FF**

- More recently, BELLE made measurements that can provide access to **unpolarized transverse momentum dependent (TMD) FF’s**
Fragmentation functions (FF)

- Initially constructed in e+e-, where no parton distribution function (PDF) is needed, as a function of z, longitudinal momentum fraction of outgoing parton carried by final state hadrons: **collinear FF**

- More recently, BELLE made measurements that can provide access to **unpolarized transverse momentum dependent (TMD) FF’s**

- Also, STAR measured TSSA of hadrons within a jet that enables access to Collins (polarized TMD) FF’s; new approach.

- We can access **collinear FF’s** as well as **unpolarized TMD FF’s** by measuring hadron distributions within Z tagged jets at LHCb!
The LHCb Detector

Detector design:

- Forward geometry to optimize acceptance for $c\bar{c}$ and $b\bar{b}$ pairs: $2 < \eta < 5$
- VERtex LOcator (VELO): vertex position, lifetime and impact parameter.
- Tracking stations TT, T1-T3 and dipole magnet: momentum of charged particles.
- PID system (RICH, calorimeters): $\pi/K/\rho$ separation, triggering on high p_T hadrons and e^\pm, γ energy.
- Muon stations M1-M5: triggering on muons, tracking stations for muon identification.

Sookhyun Lee (University of Michigan), LHCP 2020
Features attractive for hadronization studies:

- Full jet reconstruction with tracking, ECAL and HCAL
- Tagging of jets from light-quark, c- and b-quark
- Charged hadron identification from 2 < p < 100 GeV/c
- Large pp datasets available from Run I (3.23/fb at √s = 7-8 TeV) and Run II (5.9 /fb at √s = 13 TeV)

Can study identified hadron distributions within jets!

~40% of all produced c̅c and b̅b pairs are in LHCb acceptance.
Studying hadronization in jets: Z0 tagged jets at LHCb

- Z boson + jet production is predominantly sensitive to quark initiated jets.
- Forward kinematics further increases fraction of light quark jets, in particular up and down flavored quarks
- Events are selected such that there is a back-to-back ($\Delta\varphi > 7/8 \pi$) Z + leading jet pair present per event.
Studying hadronization in jets: Z\(^0\) tagged jets at LHCb

- LHCb previously measured Z\(^0\) + jet cross section
 - *JHEP 05, 131 (2016)*
- Now have measured unidentified charged hadron distributions within the jet in the same dataset.
 - PRL 123, 232001 (2019)
- First measurement at the LHC of charged hadrons within Z\(^0\)-tagged jets and also at forward rapidity.
- Measurement of identified hadron distributions within the jet under way.

![Graph showing the ratio of measured data to theoretical predictions for the Z\(^0\) + jet cross section at LHCb, with data points and error bars indicating statistical and systematic uncertainties. The graph compares measured data with predictions from POWHEG and aMC@NLO calculations.](image)

Sookhyun Lee (University of Michigan), LHCP 2020
Charged hadrons in jets: Observables

- Longitudinal momentum fraction z
- Transverse momentum with respect to jet axis j_T
- Radial profile r

Lays the foundation for a broader hadronization program at LHCb utilizing
- Full particle identification
- Charm- and beauty-initiated jets
- Multiparticle correlations within jets
- Hadron distributions in correlated jet pairs

$$Z = \frac{p_{jet} \cdot p_h}{|p_{jet}|^2}$$

$$j_T = \frac{|p_{jet} \times p_h|}{|p_{jet}|}$$

$$r = \sqrt{(\phi_{jet} - \phi_h)^2 + (\gamma_{jet} - \gamma_h)^2}$$
Analysis

- Follow similar analysis strategy to previous ATLAS and LHCb papers
 - LHCb: PRL 118, 192001 (2017)
Results: Radial profile

- Observe that the greater energy available in higher transverse momentum jets leads to more hadrons produced.
- Almost all of the additional particles are produced close to the jet axis, and go from a depletion to an excess.

\[1 \frac{dN}{dr} \]

LHCb \(\sqrt{s} = 8 \text{ TeV} \)

- \(20 < p_T^{\text{jet}} < 30 \text{ GeV} \)
- \(30 < p_T^{\text{jet}} < 50 \text{ GeV} \)
- \(50 < p_T^{\text{jet}} < 100 \text{ GeV} \)
Quark- vs. gluon-initiated jets: Radial profile

- Quark-initiated jets narrower (more collimated) than gluon-initiated jets measured by ATLAS.
 - i.e. more charged hadrons at small radii, fewer at large radii.
 - Qualitatively agrees with conventional expectations, but this shows clear and quantitative evidence from data.
Quark- vs. gluon-initiated jets: Longitudinal profile

• Quark-initiated jets have relatively more hadrons produced at higher longitudinal momentum fractions than gluon-initiated jets.

• Measuring identified charged hadron distributions will be sensitive to the quark flavor transition between hard scattering and formation of a hadron at high z.

Sookhyun Lee (University of Michigan), LHCP 2020
Quark- vs. gluon-initiated jets: Longitudinal profile

- ATLAS midrapidity γ+jet and LHCb Z+jet longitudinal momentum distributions are more similar
 - γ+ jet, like Z+jet, enhances quark jet fraction
 - Further evidence that differences observed between LHCb and ATLAS results are due to differences in quark and gluon hadronization
Future work

Two-dimensional analysis of hadron distributions

- \(j_\perp \) vs z: Access to unpolarized Transverse-momentum-dependent Fragmentation Functions (TMD FF)

Identified charged hadron distributions in jets & charge ratio thereof

- Statistical sensitivity to flavor of quarks that initiate jets
Conclusion

• Jet substructure/event shape research advanced in past decade improved our knowledge of QCD.

• TMD observables have gained much interest in nuclear physics community and unpolarized TMD fragmentation functions are poorly constrained.

• LHCb has full potential of measuring identified hadron distributions within a jet in order to access unpolarized TMD fragmentation functions.

• First measurement of unidentified hadron distributions within a jet has been recently published, showing results that are
 • in contrast to inclusive jets results from ATLAS.
 • similar to photon+jet results from ATLAS.

• Lays the foundation for a variety of future measurements related to hadronization in jets.