Jet measurements with ALICE: substructure, dead cone, charm jets

Róbert Vértesi
for the ALICE collaboration

Wigner Research Centre for Physics
Centre of Excellence of the Hungarian Academy of Sciences
Budapest
vertesi.robert@wigner.mta.hu

This work has been supported by the Hungarian NKFIH/OTKA K 120660 and FK 131979 grants
This talk: a selection of pp results

- Groomed jet substructure
- Measurement of the dead-cone
- D-mesons in jets: production
- D-meson and Λ_c-baryon: fragmentation

→ Test of pQCD and hadronization models
→ Flavor-dependent production and fragmentation
→ Baseline for measurements in heavy-ions

Not covered: Jets in heavy ion collisions

- Modification of substructures by jet-medium interactions
- Flavor-dependent energy loss mechanisms
Jet measurements with ALICE

- **central barrel**: $|\eta| < 0.9$

Time Projection Chamber:
- *gas detector*
- charged-particle tracking and identification

Inner Tracking System
- *silicon detectors*
- charged-particle tracking, secondary vertex

Charged-particle jets
- Full azimuth coverage
- Experimentally easier

ElectroMagnetic Calorimeter
- sampling scintillator
- full jet reconstruction
 - $|\eta| < 0.7$, $1.4 < \phi < \pi$
Jet measurements with ALICE

Charged-particle jets
- Full azimuth coverage
- Experimentally easier

Full jets
- Direct theory comparison
- Limited acceptance, technically more challenging

Time Projection Chamber:
- gas detector
- charged-particle tracking and identification

Inner Tracking System
- silicon detectors
- charged-particle tracking, secondary vertex

Central barrel: $|\eta| < 0.9$

Electromagnetic Calorimeter
- sampling scintillator
- full jet reconstruction
 - $|\eta| < 0.7, 1.4 < \varphi < \pi$
Jet measurements with ALICE

Time Projection Chamber:
- Gas detector
- Charged-particle tracking and identification

Inner Tracking System
- Silicon detectors
- Charged-particle tracking, secondary vertex

ElectroMagnetic Calorimeter
- Sampling scintillator
- Full jet reconstruction
 \[|\eta| < 0.7, \ 1.4 < \varphi < \pi \]

Heavy-flavor identification:
- Lifetime of heavy flavor:
 - \[c\tau (D) \approx 100-300 \mu m \]
 - \[c\tau (B) \approx 400-500 \mu m \]
- Secondary vertex resolution:
 - < 100 \mu m

Secondary vertex resolution:
- Impact parameter
- Decay length
- Jet axis
- Primary vertex
- Secondary vertex
Groomed jet substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations

- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster a jet with Cambridge-Aachen algorithm (angular ordered)
 - Iteratively remove soft branches not fulfilling

\[z > z_{\text{cut}} \theta^\beta \]

\[z = \frac{p_{T,2}}{p_{T,1} + p_{T,2}} \]

\[\theta = \frac{\Delta R_{12}}{R} \]

Larkoski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146
Groomed jet substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations
- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster a jet with Cambridge-Aachen algorithm (angular ordered)
 - Iteratively remove soft branches not fulfilling

\[z > z_{\text{cut}} \theta^\beta \]

- Substructure variables
 - Groomed momentum fraction
 \[z_g = \frac{p_{T,\text{sublead}}}{p_{T,\text{lead}} + p_{T,\text{sublead}}} \]
 - Groomed radius
 \[\theta_g \equiv \frac{R_g}{R} \]
 - Number of soft drop splittings
 \[n_{SD} \]
Soft Drop grooming: z_g vs. jet R

- **Full-jet groomed momentum fraction in pp collisions at $\sqrt{s}=13$ TeV**
 - $z_{\text{cut}}=0.1$, $\beta=0$, absolute normalized, no background subtraction
- **At low p_T:**
 - small radii jets tend to split more symmetrically
 - larger radii: higher sensitivity to non-perturbative effects
- **Slight p_T-dependence for small radii**
- **Trends reproduced well by PYTHIA**
Soft Drop grooming: z_g vs. β

- Charged-particle jet groomed momentum fraction in pp collisions at $\sqrt{s}=13$ TeV
 - $z_{\text{cut}}=0.1$, $R=0.4$, absolute normalized
 - A weak p_T-dependence is present
 - Trends reproduced relatively well by PYTHIA
Soft Drop grooming: θ_g vs. β

- Charged-particle jet groomed radius in pp collisions at $\sqrt{s}=13$ TeV
 $z_{\text{cut}}=0.1$, $R=0.4$, absolute normalized

- Smaller β grooms soft splittings away \rightarrow more collimated jets

- Trends reproduced relatively well by PYTHIA

 \rightarrow possibility to explore contributions from partonic and hadronic stages
Dead cone: Forward emissions from radiators with large mass are suppressed

\[\theta < \frac{m_q}{E_q} \]

Measurements at LEP:
- Flavor-dependence of angles between jet fragments
 - Low-background e^+e^- environment
 - Indirect measurements w.r.t. jet axis
Dead cone: the Lund plane

- D^0 as well as inclusive jets: Reclustering with C/A

 L. Cunqueiro, M. Ploskon, PRD 99, 074027

- Lund plane populated with all splittings of the radiator’s prong

 - D^0: depletion expected at low angles (~higher $\ln(1/\theta)$ values)

 Note: 10 to 15% feed-down contribution in D^0 from b
Dead cone: the Lund plane

- D^0 as well as inclusive jets: Reclustering with C/A
 - L. Cunqueiro, M. Ploskon, PRD 99, 074027
- Lund plane populated with all splittings of the radiator’s prong
 - D^0: depletion expected at low angles (~higher $\ln(1/\theta)$ values
 - Note: 10 to 15% feed-down contribution in D^0 from b

- k_T-cut to remove contamination from hadronization, decay and the underlying event
Dead cone effect in ALICE

D-tagged to inclusive ratios vs. $\ln(1/\theta)$ at $\sqrt{s}=13$ TeV

- Significant suppression of radiation in D-tagged jets towards low angles
 - effect decreases towards higher energy of the radiator ($\rightarrow \theta > m_q/E_q$)
 - effect decreases towards lower k_T cut (\rightarrow more contamination)

First direct measurement of the dead cone effect in pp collisions
Dead cone: model comparison

- **D-tagged to inclusive ratios** vs. $\ln(1/\theta)$ at $\sqrt{s}=13$ TeV
- Simulations with PYTHIA6 describe ALICE data qualitatively
Charm production: D⁰-jet cross sections

- **Analysis technique**
 - Identify D⁰ mesons via hadronic decays
 - Replace decay products with D⁰ in jet

- **Comparison with models**
 - NLO POWHEG+PYTHIA (hvq) calculations consistent with data (only marginally at low-\(p_T \))
 - Neither LO PYTHIA 6 and 8, nor NLO HERWIG 7 describe the cross-section
Charm fragmentation: D-jet $z_{||}$

- **Parallel momentum fraction**, pp $\sqrt{s}=13$ TeV
 - Characteristic to heavy-flavor fragmentation
- **D-meson fragmentation** is softer at high p_T than at lower p_T
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_T
Charm fragmentation: Λ_c-jet and D-jet $z_{||}$

- **Parallel momentum fraction**, pp $\sqrt{s}=13$ TeV
 - Characteristic to heavy-flavor fragmentation
- **D-meson fragmentation** is softer at high p_T than at lower p_T
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_T
- **Λ_c fragmentation**: similar trends (different p_T range!)
 - PYTHIA8 with SoftQCD settings performs well with Λ_c
 - Opportunity to compare baryon to meson fragmentation
D-jet substructure: z_g, R_g, n_{SD}

- **D⁰-tagged charged-jet groomed substructure**

 pp $\sqrt{s}=13$ TeV, $z_{cut}=0.1$, $\beta=0$

- **n_{SD}**: charm jets typically have less hard splitting than light jets

 → **Consistent with harder heavy-flavor fragmentation** (mass and color charge effects)
Jet substructures with soft-drop grooming in pp collisions
- Full jets vs. R, charged jets vs. β in a broad p_T range
 - Opportunity to explore contributions of pQCD and hadronization
 - Baseline for measurements in heavy-ions

Charm-jet measurements in pp collisions
- Clear indication of the dead cone effect in first direct measurement
- D-tagged jet cross sections, D and Λ_c parallel momentum fraction
- D^0-jet substructure indicates harder fragmentation than light flavor
 - Test of pQCD models and flavor-dependent fragmentation

Summary and outlook
Summary and outlook

- **Jet substructures with soft-drop grooming in pp collisions**
 - Full jets vs. R, charged jets vs. β in a broad p_T range
 - Opportunity to explore contributions of pQCD and hadronization
 - Baseline for measurements in heavy-ions

- **Charm-jet measurements in pp collisions**
 - Clear indication of the dead cone effect in first direct measurement
 - D-tagged jet cross sections, D and Λ_c parallel momentum fraction
 - D^0-jet substructure indicates harder fragmentation than light flavor
 - Test of pQCD models and flavor-dependent fragmentation

Stay tuned for new results soon
Thank You!
Jet suppression in Pb-Pb

- Measurement down to $p_T = 40 \text{ GeV}/c$ => redistribution of energy
- Only weak dependence seen in data on jet resolution R
- Challenge to some models: stronger R dependence predicted than in data
Jet-medium interactions

- **Low p_T:** Azimuthal h-h correlations, per-trigger normalized
 - **Broadening** of central angular correlation peaks in the $\Delta \eta$ direction
 - Understanding: rescattering with radial flow (AMPT)

- **Higher p_T:** Azimuthal h-h correlations, $I_{AA} = Y_{AA}/Y_{pp}$
 - **Narrowing** of the peak in central events in the $\Delta \eta$ direction
 - Jet structure modifications? No proper understanding by models.
Jet Substructure in Pb-Pb

- **First intra-jet splitting z_g**
 - At small angles ($\Delta R < 0.1$): consistent z_g distributions in Pb-Pb and vacuum
 - At large angles ($\Delta R > 0.2$): z_g distributions are steeper in medium than in vacuum

- **Early jet development influenced by medium**
Charm fragmentation: D-jet $z_{||}$ vs. p_T

- **parallel momentum fraction**
 - Characteristic to heavy-flavor fragmentation

- D-meson fragmentation is softer at high p_T than at lower p_T

- POWHEG+PYTHIA6 predicts a stronger change towards low p_T

$pp \sqrt{s} = 13$ TeV

$5 < p_{T,\text{ch,jet}} < 7$ GeV/c

$7 < p_{T,\text{ch,jet}} < 10$ GeV/c

$10 < p_{T,\text{ch,jet}} < 15$ GeV/c

$15 < p_{T,\text{ch,jet}} < 50$ GeV/c
Baryon-to-meson ratio: Λ_c^+/D^0, Ξ_c^0/D^0

- Ξ_c^0/D^0 as well as Λ_c^+/D^0 are underestimated by models based on ee collisions: Does charm hadronization depend on collision system?
 - PYTHIA8 with string formation beyond leading colour approximation? Christiansen, Skands, JHEP 1508 (2015) 003
 - Feed-down from augmented set of charm-baryon states? He, Rapp, 1902.08889
- Detailed measurements of charm baryons provide valuable input for theoretical understanding of HF fragmentation
Heavy flavor jets in p-Pb

- Heavy-flavor jets measured down to $p_T = 10$ GeV/c
- No mid-rapidity nuclear modification of HFE jets visible
 - Regardless of chosen jet resolution parameter
- Cross section of beauty jets tagged with displaced vertices also described by POWHEG HVQ x A (pp) within uncertainty
ALICE Upgrade for Run-3 and Run-4

- Up to 50 kHz Pb-Pb interaction rate
- Requested Pb-Pb luminosity: 13 nb$^{-1}$ (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT
- Faster, continuous readout