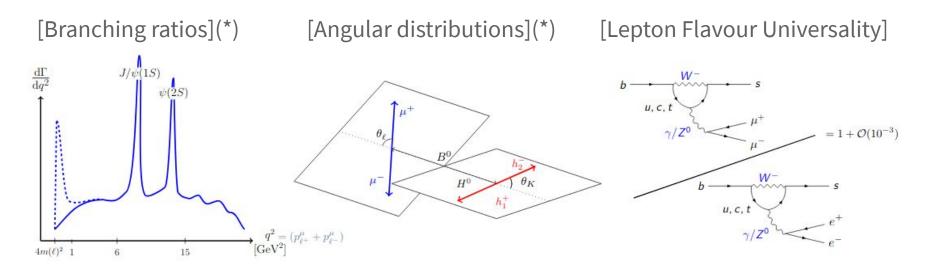
Lepton flavour violation and universality tests at LHCb

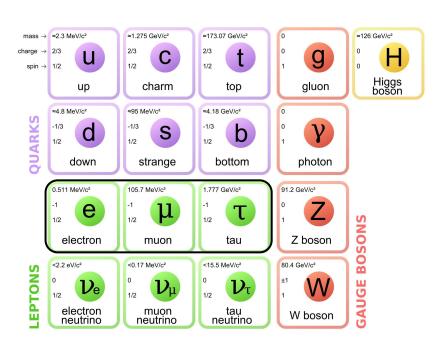
Miriam Lucio Martínez, on behalf of the LHCb collaboration



Outline

- Flavour anomalies in a nutshell
- Lepton Flavour Universality & Violation
- LFU tests
 - Semileptonic decays: R(D*)
 - ➤ Rare decays: R(K), R(pK)⁻¹
- **\Lambda** LFV searches: $B^+ \rightarrow K^+ \mu^{\pm} e^{\mp}$, $B^+ \rightarrow K^+ \mu^{-} \tau^{-}$, $B_{(s)}^{ 0} \rightarrow e^{\pm} \mu^{\mp}$, $B_{(s)}^{ 0} \rightarrow \tau^{\pm} \mu^{\mp}$
- ❖ A word about the future @ LHCb
- Conclusions

Flavour anomalies in a nutshell


A coherent set of **discrepancies** with respect to the **SM**

High theoretical uncertainties

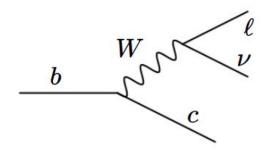
Low theoretical uncertainties

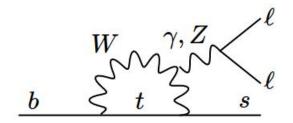
Lepton Flavour Universality & Violation

In the SM:

- Lepton Flavour Universality (LFU): electroweak couplings are the same across the three lepton generations
 - Amplitude of processes identical, except for phase space and helicity suppression
- Oscillations of massive neutrinos → Lepton
 Flavour Violation (LFV) occurs for neutrals, can
 mediate charged LFV in loops with BF beyond
 experimental reach
- New Physics models explaining the anomalies(*) usually feature:
- 07 (2015)], [Phys. Lett. O LFU violation & large BF for LFV processes

LFU tests

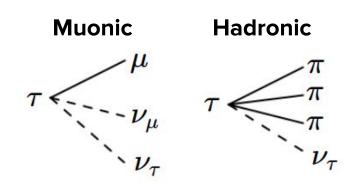

Very clean and important probes of the SM and the LFU hypothesis


1. Semileptonic decays

- ⇒ Charged current decays
- ⇒ Tree level, large Branching Fraction

2. Rare decays

- ⇒ Neutral current decays
- ⇒ Loop level, strongly suppressed in the SM



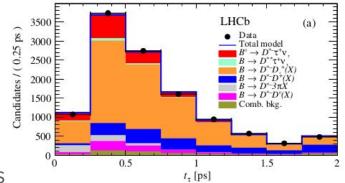
Semileptonic decays

- Compare the BF of b $\rightarrow c \tau v_{\tau}$ and b $\rightarrow c \mu v_{\mu}$ decays
- Hadronic uncertainties mainly cancel out → clean theory prediction in the SM

Experimental remarks:

- 1. Taus reconstructed in two ways depending on the decay: **muonic** and **hadronic**
- 2. For the taus, neutrino(s) in the final state⇒ challenge
- 3. B-factories (BaBar, Belle) have cleaner events, but LHCb has more statistics
- 4. Results with Run 1 data (2011 2012)

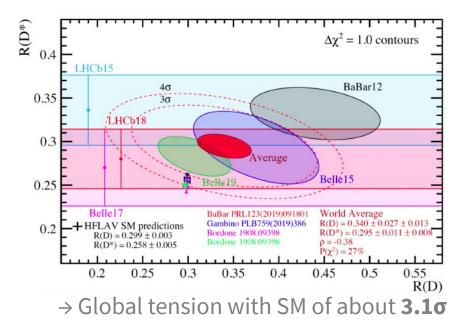
R(D*) hadronic


[PRD 97, 072013 (2018)]

$$R_{D^*} \equiv rac{\mathcal{B}(B o D^* au
u_ au)}{\mathcal{B}(B o D^* \mu
u_\mu)} = 0.258 \pm 0.005 \, [ext{HFLAV average}]$$

- $B^0 \rightarrow D^{*-}3\pi$ as **normalization** channel
- 2 main sources of **background**:
 - \circ B → D*3πX: suppressed imposing a detachment constraint of τ →3π from the B vertex
 - Double-charm decays: suppressed using a BDT
- Three-dimensional binned maximum likelihood fit to the distributions of q^2 , 3π decay time, and BDT output

$$\mathcal{R}(D^{*-}) = 0.291 \pm 0.019(\text{stat}) \pm 0.026(\text{syst}) \pm 0.013(\text{ext})$$


- \sim ~0.9 σ above the SM value
- compatible with the muonic channel
- > systematics dominated by simulation statistics

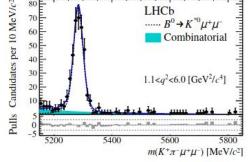
R(D*) combination

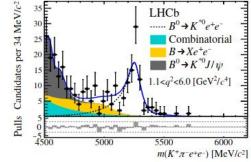
[hflav.web.cern.ch]

Including results from **Belle** [PRD 92 (2015) 072014], [PRL 118 (2017) 211801], [arXiv:1904.08794v2] and **BaBar** [PRL 109, 101802 (2012)], [PRL 123 (2019) 091801]:

Rare decays

In the SM:
$$R_X \equiv \frac{\mathcal{B}(B \to X \mu^+ \mu^-)}{\mathcal{B}(B \to X e^+ e^-)} \simeq 1$$

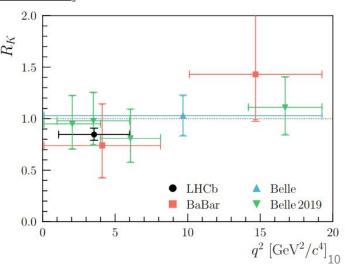

- cancellation of hadronic effects
- central q^2 bin [1.1, 6.0] GeV²/c⁴


Measure double ratios to better control uncertainties:

O(1%) radiative corrections in the
$$R_X \equiv \frac{\mathcal{B}(B \to X \mu^+ \mu^-)}{\mathcal{B}(B \to X J/\psi(\to \mu^+ \mu^-))} \frac{\mathcal{B}(B \to X J/\psi(\to e^+ e^-))}{\mathcal{B}(B \to X e^+ e^-)} \simeq 1$$

Experimental challenges:

- Electron reconstruction
- Many background sources
- Low statistics

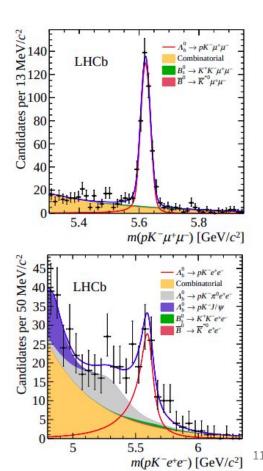


R(K)

[PRL 122 (2019) 191801]

- $X = K^+ \Longrightarrow B^+ \rightarrow K^+ e^+ e^-, B^+ \rightarrow K^+ \mu^+ \mu^-$
- One region of q^2 : central (1.1 < q^2 < 6.0 GeV²/c⁴)
- Run 1 data (2011 2012) + Run 2 data (2015 2016)
 - Twice as many B⁺'s as the previous measurement [PRL 113, 151601]
- Various cross-checks performed:
 - \circ r_{1/11} is flat for a number of reconstructed variables.
 - $r_{J/\psi} = 1.014 \pm 0.035 (\text{stat} + \text{syst})$
 - $R_K^{\Psi(2S)} = 0.986 \pm 0.013(\text{stat} + \text{syst})$
- \rightarrow R(K) compatible with the SM expectation at **2.5** σ :

$$R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$$

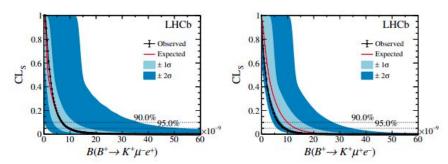

[PRD 86 (2012) 032012], [PRL 103 (2009) 171801], [arXiv:1908.01848]

R(pK)⁻¹ [arXiv:1912.08139]

- $X = pK^- \Rightarrow \Lambda_b^0 \Rightarrow pK^-e^+e^-, \Lambda_b^0 \Rightarrow pK^-\mu^+\mu^-$
 - **First** test of LFU with *b* baryons
 - First **measurement** of the $\Lambda_b^0 \rightarrow pK^-\mu^+\mu^-$ BF
 - First **observation** of the decay $\Lambda_b^0 \rightarrow pK^-e^+e^-$
- Run 1 (2011-2012) + Run 2 (2016) dataset
 - \circ 0.1 < q^2 < 6.0 GeV²/c⁴
 - \circ m(pK⁻) < 2600 MeV/c²
- Similar cross-checks as for R(K)
- Important sources of background:
 - Combinatorial + hadron misidentification

$$R_{pK}^{-1} = 1.17_{-0.16}^{+0.18} \pm 0.07$$

Compatible with 1 within 1σ; independent test of the SM



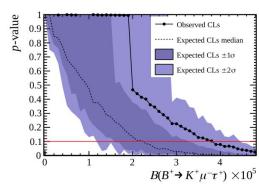
$B^{+} \rightarrow K^{+} \mu^{\pm} e^{\mp}$

[PRL.123 (2019) 241802]

- Run 1 analysis, using $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$ as **normalization** & $B^+ \to K^+ J/\psi (\to e^+ e^-)$ as **control** channels
 - o Assumes a **uniform** distribution of signal events within the phase space
 - Most significant background: partially reconstructed B⁺ decays (vetoed)
 - Two **BDTs** for combinatorial background & bkg from partially reconstructed b-hadron decays
- No signal excess found, upper limit @ 90% (95%) CL:

$$\mathcal{B}(B^+ \to K^+ \mu^- e^+) < 7.0(9.5) \times 10^{-9}$$

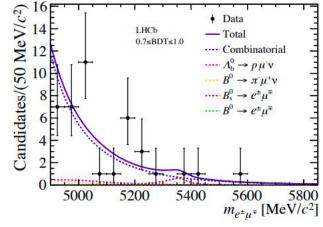
 $\mathcal{B}(B^+ \to K^+ \mu^+ e^-) < 6.4(8.8) \times 10^{-9}$


- 1 order of magnitude improvement
- Systematics dominated by simulation corrections

[arXiv:2003.04352]

- Run 1 (2011-2012) + Run 2 (2015-2018) analysis using B^{*0}_{s2} → B⁺K⁻ decays (1% of total B⁺ production)
 - Signal: phase space + operators/WC from [Eur. Phys. J. C76 (2016) 134]
 - o **Background**: mostly partially reconstructed b-hadron decays
 - $B^+ \rightarrow J/\psi K^+$ as **normalization** channel, with $J/\psi \rightarrow \mu^+\mu^-$
 - $m(K^+\mu^-) > 1800 \text{ MeV} \rightarrow \text{reduces bkg from semileptonic charm decays}$
 - ο τ selected **inclusively**, primarily via decays with a single charged particle.
- Preferred over $B^+ \rightarrow K^+ \mu^+ \tau^+$:
 - lower background from semileptonic decays
- No signal excess found, world-best upper limit:

$$\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9(4.5) \times 10^{-5}$$
 @ 90% (95%) CL


$B_{(s)}^{\quad o} \rightarrow e^{t} \mu^{T}$

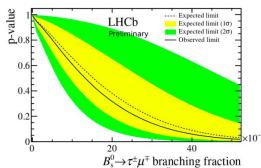
[arXiv:1710.04111]

- Run 1 analysis, using $B^0 \to K^+\pi^-$ (similar topology) & $B^+ \to K^+J/\psi$ ($\to \mu^+\mu^-$) (abundant yield and similar purity and trigger selection) as **normalization** channels
 - \circ m(e[±] μ^{\mp}) \subseteq [4900, 5850] MeV/c²
 - Simultaneous invariant- mass fit in 2 brem categories x 7 BDT bins, with backgrounds:
 - B \rightarrow h⁺h'⁻ as main **peaking** bkg \rightarrow only 0.1 events survive the PID requirements
 - Combinatorial bkg → BDT
 - $B^0 \to \pi \mu \nu$ and $\Lambda_b^0 \to \pi \mu \nu$ ($\pi \to e \text{ misID}$) \to included in the fit
- No signal excess found, world-best upper limit(*):

$$\mathcal{B}(B_s^0 \to e^{\pm}\mu^{\mp}) < 5.4(6.3) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to e^{\pm}\mu^{\mp}) < 1.0(1.3) \times 10^{-9}$

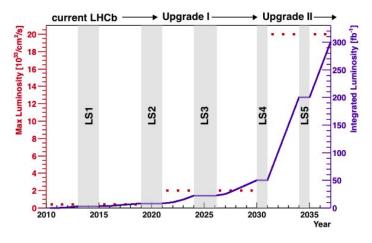
@ 90% (95%) CL

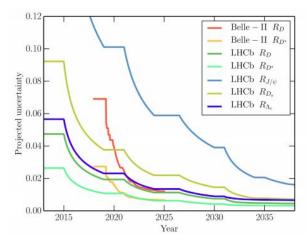

^(*) dominated by heavy eigenstate for B_s^0

$\mathsf{B}_{(\mathsf{s})}^{\mathsf{o}}\!\!\to\mathsf{T}^{\!\!\!\!+}\!\mu^{\!\!\!\!\!+}$

[PRL 123, 211801]

- Run 1 analysis, using $\tau^- \to a_1^-(1260)\nu_{\tau}$, $a_1^-(1260) \to \rho^0(770)(\to \pi^+\pi^-)\pi^-$
 - \circ B⁰ \to D⁻(K⁺ π ⁻ π ⁻) π ⁺ as **normalization** channel
 - O Backgrounds:
 - Reduce with cut-based selection, e.g. decay time and masses of pion combinations
 - BDT that combines **isolation variables**: applied to reject backgrounds with extra tracks
 - Second BDT to reduce combinatorial background
 - Final BDT trained on MC vs SS data (full mass range) is used to categorize the events.
 - \circ Simultaneous maximum-likelihood fit to $M_R \subseteq [4600, 5800] \text{ MeV/c}^2 \text{ in 4 (final) BDT bins}$
- No signal excess found, upper limits(*):


$$\mathcal{B}(B^0 \to \tau^{\pm}\mu^{\mp}) < 1.2(1.4) \times 10^{-5}$$
 @ 90% (95%) CL $\mathcal{B}(B_s^0 \to \tau^{\pm}\mu^{\mp}) < 3.4(3.5) \times 10^{-5}$



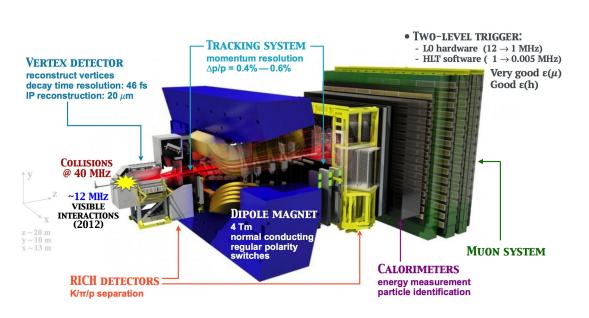
(*) B⁰ limit **improves** by a factor of 2 BaBar's result [PRD 77 (2008) 091104], **first** limit on the B_s⁰ mode

A word about the future @ LHCb

- Run 2 updates + new measurements: $R(D_s^*)$, $R(\Lambda_c)$, $R(K\pi\pi)$, $R(K^{*+})$, $R(K_S^0)$, $B_s^0 \to \Phi \tau \mu$, $\Lambda_b^0 \to \Lambda e^{\pm} \mu^{\mp}$, form factors ... in the pipeline
- In the **Upgrade**, LHCb will collect ~50fb⁻¹, 5x luminosity in Run 1 and Run2 combined (9fb⁻¹)

[J. Phys. G: Nucl. Part. Phys. 46 (2019) 023001]

Conclusions


- An intriguing set of anomalies has been measured by LHCb, BaBar and Belle
 - Lepton Flavour Universality tests & Lepton Flavour Violating searches are theoretically clean probes for New Physics
- Presented the latest set of results on LFU and LFV from LHCb
- We need more statistics to understand and disentangle possible New Physics contributions
- More results to come + measurements from Belle II and the LHCb Upgrade will help to further clarify the situation

STAY TUNED!

Thanks for your attention!

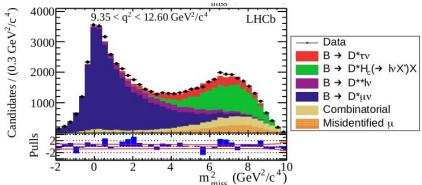
The LHCb detector

Single forward-arm spectrometer

- Acceptance down to low p_T
- Particle ID
- Momentum & mass reconstruction
- Vertexing
- Trigger for hadronic and leptonic modes
- Can operate in pp, pPb,
 PbPb and fixed-target

R(D*) muonic

[PRL 115, (2015) no.11, 111803]


$$R_{D^*} \equiv rac{\mathcal{B}(B o D^* au
u_ au)}{\mathcal{B}(B o D^* \mu
u_\mu)} = 0.258 \pm 0.005 \, [ext{HFLAV average}]$$

- Fit using a maximum likelihood method with 3D templates representing signal + background + normalization (B⁰ → D*-μ+ν_{...})
 - In bins of m²_{miss}, E*_u and q²
- MVA techniques based on μ isolation used to suppress large backgrounds from

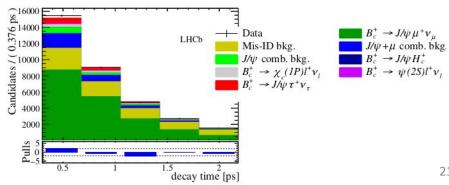
partially reconstructed B-decays

$$\mathcal{R}(D^*) = 0.336 \pm 0.027 (\mathrm{stat}) \pm 0.030 (\mathrm{syst})$$

 \sim "1.9 σ above the SM value

R(J/ψ) muonic

[PRL 120 (2018) 121801]

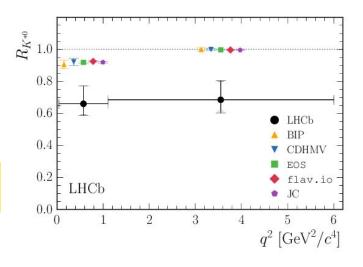

$$R(J/\psi) = \frac{B_c^+ \to J/\psi \tau^+ \nu_{\tau}}{B_c^+ \to J/\psi \mu^+ \nu_{\mu}} \in [0.25, 0.28](SM)$$

[PLB 452 (1999) 129] [arXiv:hep-ph/0211021] [PRD 73 (2006) 054024] [PRD 74 (2006) 074008]

- Run 1 analysis, using $B^+_c \rightarrow J/\psi \mu^+ \nu_{\mu}$ as **normalization** mode, with $J/\psi \rightarrow \mu^+ \mu^-$
- Multidimensional **fit** to the data using templates:
 - Largest background component is misID (templated using data-driven approach)

$$R(J/\psi) = 0.71 \pm 0.17({\rm stat}) \pm 0.18({\rm syst})$$

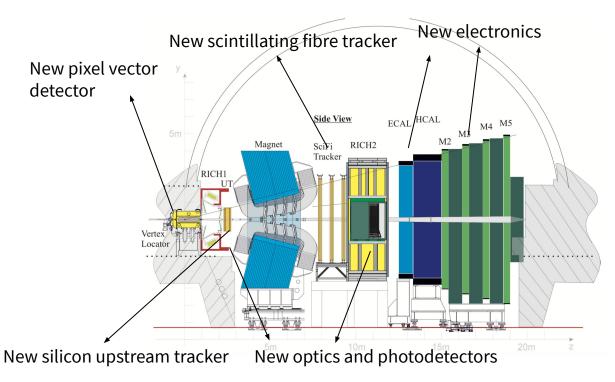
- Within 2σ from the SM
- Largest systematic from form factors



R(K*)

[JHEP 1708 (2017) 055]

- $X = K^* \Longrightarrow B \rightarrow K^* e^+ e^-, B \rightarrow K^* \mu^+ \mu^-$
- Two regions of q²: low and central
- Run 1 data (2011 2012)
- Similar cross-checks as for R(K)

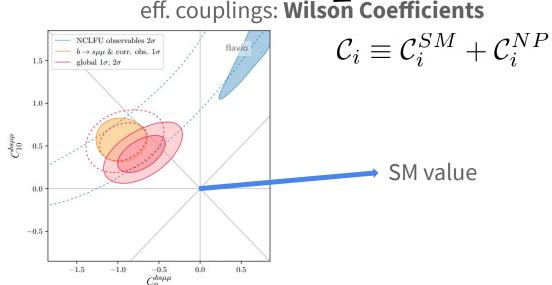

$$R_{K^{*0}} = \begin{cases} 0.66_{-0.07}^{+0.11}(\text{stat}) \pm 0.03(\text{syst}) & \text{for } 0.045 < \text{q}^2 < 1.1 \text{GeV}^2/\text{c}^4\\ 0.69_{-0.07}^{+0.11}(\text{stat}) \pm 0.05(\text{syst}) & \text{for } 1.1 < \text{q}^2 < 6.0 \text{GeV}^2/\text{c}^4 \end{cases}$$

- \geq 2.1-2.3 (low) and 2.4-2.5 σ (central) deviation from the SM
- Statistically limited by the electron sample

A word about the LHCb Upgrade

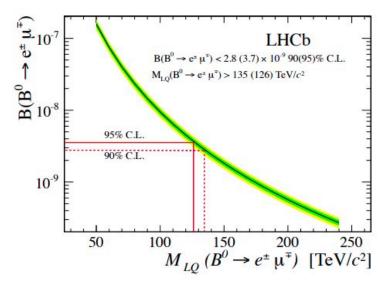
Collect ~50fb⁻¹, 5x luminosity in Run 1 and Run2 combined (9fb⁻¹)!

(Some) Theoretical interpretations - LFU


Model **independent** approach:

 $\mathcal{H}_{\mathrm{eff}} \propto \sum_{i} \mathcal{C}_{i} \mathcal{O}_{i}$ local operators eff. couplings: Wilson Coefficients

 \Rightarrow Global fits to WC using

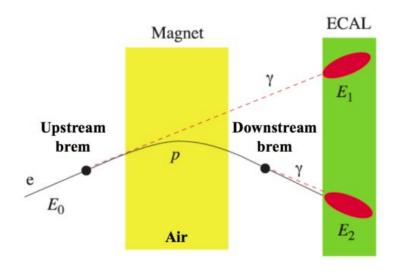

flavour anomalies:

[Eur.Phys.J.C 80 (2020) 3, 252]



(Some) Theoretical implications - LFV

Effect of LFV searches in models with LQ:



[PRL 111(2013)141801]

[JHEP07(2019)168]

Electrons @ LHCb

