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Motivation
Tests of LFU in B-meson decays

Premise 

• B-anomalies hint physics beyond the SM(*)  
(*) compelling, yet inconclusive

• A call for a bottom-up model building adventure

NP in b → cτν?

BaBar, Belle, LHCb

NP in b → sμμ?

Summary plot 
by Marzocca

LHCb

Summary plot 
from 1903.11517
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A bottom-up approach
IR consistency checks

• Q0: Is there a consistent explanation of anomalies within the SM EFT while 
respecting all experimental constraints?  
[The SM EFT is a motivated framework that encompasses specific short-distance models at low-energies. ] 

• If yes, Q1: what generates the required higher-dimensional operators? What is 
an emerging set of new heavy mediators? Can they pass the new consistency 
checks, e.g. direct searches at the LHC?

• If yes, Q2: is there a working prototypical model that is fully-calculable and can 
be extrapolated to high energies?
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IR consistency checks

• Q0: Is there a consistent explanation of anomalies within the SM EFT while 
respecting all experimental constraints?  
[The SM EFT is a motivated framework that encompasses specific short-distance models at low-energies. ] 

• If yes, Q1: what generates the required higher-dimensional operators? What is 
an emerging set of new heavy mediators? Can they pass the new consistency 
checks, e.g. direct searches at the LHC?

• If yes, Q2: is there a working prototypical model that is fully-calculable and can 
be extrapolated to high energies?

UV insights and connections 

• Q3: If such construction exists, how does it fit in the “UV picture”? Could it be 
linked to open problems of the SM such are the hierarchy, the flavour puzzle, 
etc.

• Q4: What connections with other sectors follow from this? Where should we 
look further?

Admir Greljo | Theory confronting LFU data

A bottom-up approach
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New Fermi interactions
SM EFT + U(2) flavour symmetry

Admir Greljo | Theory confronting LFU data

• The analysis of SU(2) gauge invariant dimension-6 operators.

• Large number of flavour parameters in the SM EFT. Flavour symmetries 
and breaking patterns serve as the organising principle [2005.05366].

• Coherent picture of NP [1706.07808] 
1) Semi-leptonic four-fermion operators involving left-handed fermions  
 
 
 
2) U(2)q x U(2)l flavour symmetry with minimal breaking spurions

2

at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.
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Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).
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Here, E and E
0
are the energies of the incoming and outgoing particles and E = E

0
due to the

energy conservation. We choose the transverse momentum of the outgoing particles to be along

the x- axis. Explicitly computing

s = (p1 + p2)
2
= 4E

2
,

t = (p1 � p
0
1)

2
=

= �

⇣
� sin ✓

p
E2 � (m0)2

⌘2
�

⇣p
E2 �m2 � cos ✓

p
E2 � (m0)2

⌘2
,

= �

⇣
E

2
�m

2
+ E

2
� (m

0
)
2
� 2 cos ✓

p
E2 �m2

p
E2 � (m0)2

⌘
,

= �2E
2

 
1�

m
2
+ (m

0
)
2

2E2
� cos ✓

r
1�

m2

E2

r
1�

(m0)2

E2

!
,

u = (p1 � p
0
2)

2
=

= �

⇣
sin ✓

p
E2 � (m0)2

⌘2
�

⇣p
E2 �m2 + cos ✓

p
E2 � (m0)2

⌘2
,

= �2E
2

 
1�

m
2
+ (m

0
)
2

2E2
+ cos ✓

r
1�

m2

E2

r
1�

(m0)2

E2

!
.

(17)

✏q,` ⇡ �
q,`
33 v/mZ0 (18)

H
0
= (1,2, 1/2) (19)

W
0
= (1,3, 0) (20)
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Vector triplet model

[AG, Isidori, Marzocca] 
JHEP 1507 (2015) 142

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:

�L(T )
c.c. = � gqg`

2m2
V

h
(V �q)ij�

`

ab

⇣
ūiL�µd

j

L

⌘⇣
¯̀a
L�µ⌫

b

L

⌘
+ h.c.

i
, (7)

�L(T )
FCNC = � gqg`

4m2
V

�`

ab

h
�q

ij

⇣
d̄iL�µd

j

L

⌘
� (V �qV †)ij

⇣
ūiL�µu

j

L

⌘i⇣
¯̀a
L�µ`

b

L � ⌫̄aL�µ⌫
b

L

⌘
, (8)

�L(T )
�F=2 = �

g2q
8m2

V


(�q

ij
)2
⇣
d̄iL�µd

j

L

⌘2
+ (V �qV †)2ij

⇣
ūiL�µu

j

L

⌘2
�

, (9)

�L(T )
LFV = �

g2
`

8m2
V

�`

ab
�`

cd
(¯̀aL�µ`

b

L)(¯̀
c

L�µ`
d

L) , (10)

�L(T )
LFU = �

g2
`

8m2
V

(�2�`

ab
�`

cd
+ 4�`

ad
�`

cb
)(¯̀aL�µ`

b

L)(⌫̄
c

L�µ⌫
d

L) . (11)

2.2 Step II: simplified dynamical model

In order to generate �L(T )
4f in a dynamical way, we introduce the heavy spin-1 triplet, V a

µ

(a = 1, 2, 3), following the general simplified Lagrangian proposed in Ref. [42]. By means of
this approach we can describe both models in which the new vector is weakly coupled, such as
gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
simplified Lagrangian reads

LV = �1

4
D[µV

a

⌫]D
[µV ⌫]a +

m2
V

2
V a

µ V
µa + gHV a

µ (H
†T ai

$
Dµ H) + V a

µ J
a

µ , (12)

where T a = �a/2, D[µV
a

⌫] = DµV a
⌫ �D⌫V a

µ and DµV a
⌫ = @µV a

⌫ + g✏abcW b
µV

c
⌫ .

3

By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
e↵ = � 1

2m2
V

Ja

µJ
a

µ � g2
H

2m2
V

(H†T ai
$
Dµ H)(H†T ai

$
Dµ H)� gH

m2
V

(H†T ai
$
Dµ H)Ja

µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply

�g2
H
v2

4m2
V

✓
m2

WW+
µ W�

µ +
m2

Z

2
ZµZµ

◆✓
1 +

h

v

◆4

. (14)

This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
the heavy vector triplet. The relative shift in the heavy vector masses mV is only of O(g2Hm

2
W v

2
/m

4
V )

5

n � 2 (64)

b ! c⌧ ⌫̄⌧ (65)

b ! sµµ̄ (66)

L � W
0aµ

J
a
µ (67)
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of the Z 0 ! ⌧+⌧� branching ratio. The tension can be further reduced in the limit where the
assumption of narrow resonances (� ⌧ M), that is implicit in all present direct searches, no
longer holds.

2 The model

2.1 Step I: four-fermion operators

Our main assumption is that all the non-standard four-fermion interactions can be described by
the following e↵ective Lagrangian

�L(T )
4f = � 1

2m2
V

Ja

µJ
a

µ , (4)

where Ja
µ is a fermion current transforming as a SU(2)L triplet, built in terms of SM quarks

and lepton fields:

Ja

µ = gq�
q

ij

⇣
Q̄i

L�µT
aQj

L

⌘
+ g`�

`

ij

⇣
L̄i

L�µT
aLj

L

⌘
. (5)

Here �q,` are Hermitian flavor matrices and, by convention, �q

33 = �`

33 = 1.
We define Qi

L
and Li

L
to be the quark and lepton electroweak doublets in the flavor basis

where down-type quarks and charged-leptons are diagonal. We assume an approximate U(2)q ⇥
U(2)` flavor symmetry, under which the light generations of Qi

L
and Li

L
transform as 2q⇥1` and

1q ⇥ 2`, respectively, and all other fermions are singlets. We further assume that the underlying
dynamics responsible for the e↵ective interaction in Eq. (4) involves, in first approximation,
only third generation SM fermions (the left-handed 1q ⇥ 1` fermions). In this limit, the flavor

couplings in Eq. (5) are �q,`

ij
= �i3�3j . The corrections to this limit are expected to be generated

by appropriate U(2)q⇥U(2)` breaking spurions, connected to the generation of subleading terms
in the Yukawa couplings for the SM light fermions.

In the quark case, the leading U(2)q breaking spurion is a doublet, whose flavor structure is
unambiguously connected to the CKM matrix (V ) [29]. We can thus expand �q

ij
as follows:

�q

ij
= �i3�3j + (✏1�i3V̂3j + ✏⇤1V̂

⇤
3i�3j) + ✏2(V̂

⇤
3iV̂3j) + . . . , V̂3j = V3j � �3jV3j , (6)

with ✏2 = O(✏21). As we will discuss below, low-energy flavor-physics data imply ✏i ⌧ 1.
The breaking structure in the lepton sector is less clear, given the intrinsic ambiguity in

reconstructing the lepton Yukawa couplings under the (natural) assumption that neutrino masses
are generated by a see-saw mechanism.2 As we will discuss below, low-energy data are compatible
with the hypothesis that the leading breaking terms in the lepton sector transform as doublets
of U(2)`.

2An attempt to build a consistent neutrino mass matrix starting from an approximate U(2)` symmetry broken
by small U(2)` doublets has been discussed in Ref. [30].
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• Degenerate charged W’± and neutral Z’

• Quark FV controlled by a single matrix 

quark x lepton

lepton x lepton

quark x quark

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:

�L(T )
c.c. = � gqg`

2m2
V

h
(V �q)ij�

`

ab

⇣
ūiL�µd

j

L

⌘⇣
¯̀a
L�µ⌫

b

L

⌘
+ h.c.

i
, (7)

�L(T )
FCNC = � gqg`

4m2
V

�`

ab

h
�q

ij

⇣
d̄iL�µd

j

L

⌘
� (V �qV †)ij

⇣
ūiL�µu

j

L

⌘i⇣
¯̀a
L�µ`

b

L � ⌫̄aL�µ⌫
b

L

⌘
, (8)

�L(T )
�F=2 = �

g2q
8m2

V


(�q

ij
)2
⇣
d̄iL�µd

j

L

⌘2
+ (V �qV †)2ij

⇣
ūiL�µu

j

L

⌘2
�

, (9)

�L(T )
LFV = �

g2
`

8m2
V

�`

ab
�`

cd
(¯̀aL�µ`

b

L)(¯̀
c

L�µ`
d

L) , (10)
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LFU = �

g2
`

8m2
V

(�2�`

ab
�`

cd
+ 4�`

ad
�`

cb
)(¯̀aL�µ`

b

L)(⌫̄
c

L�µ⌫
d

L) . (11)
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(a = 1, 2, 3), following the general simplified Lagrangian proposed in Ref. [42]. By means of
this approach we can describe both models in which the new vector is weakly coupled, such as
gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
simplified Lagrangian reads

LV = �1
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⌫]D
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m2
V

2
V a
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µ J
a

µ , (12)
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µV
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By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
e↵ = � 1

2m2
V

Ja

µJ
a

µ � g2
H

2m2
V

(H†T ai
$
Dµ H)(H†T ai

$
Dµ H)� gH

m2
V

(H†T ai
$
Dµ H)Ja

µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply

�g2
H
v2

4m2
V

✓
m2

WW+
µ W�

µ +
m2

Z

2
ZµZµ
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1 +

h

v

◆4

. (14)

This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
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2
W v

2
/m

4
V )

5

Q
Q

L

L

+ …

J
H
E
P
1
1
(
2
0
1
7
)
0
4
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3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)

– 4 –
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1
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where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we
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breaking terms is presented in appendix A. The main points can be summarised as follows:
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µµ = O(|Vτµ|2) . (2.3)

– 4 –

JHEP11(2017)044

3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)

– 4 –

ℒ ⊃

https://arxiv.org/abs/2005.05366
https://arxiv.org/abs/1706.07808


3

New Fermi interactions
SM EFT + U(2) flavour symmetry

Admir Greljo | Theory confronting LFU data

b → cτν
b → sμμ b → sνν• Triplet versus singlet operator: new dynamics gives                  but not

• The role of U(2):  
- Accommodates for the right ratio of CC and NC anomalies 
- Protects against LFU tests in kaons and light lepton flavours

• NP in right-handed currents could be useful [1909.02519]

• Drell-Yan constraints important [1609.07138, 1811.07920]. Suppression of flavour-blind int. [1704.09015].

• Radiatively induced effects important [1606.00524, 1807.02068]

• The analysis of SU(2) gauge invariant dimension-6 operators.

• Large number of flavour parameters in the SM EFT. Flavour symmetries 
and breaking patterns serve as the organising principle [2005.05366].

• Coherent picture of NP [1706.07808] 
1) Semi-leptonic four-fermion operators involving left-handed fermions  
 
 
 
2) U(2)q x U(2)l flavour symmetry with minimal breaking spurions

2

at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.

SM

!4 TeV"!2!Q3ΓΑQ3"!L2ΓΑL2"

!!30 TeV"!2!Q1ΓΑΣaQ1"!L2ΓΑΣaL2"

!4 TeV"!2!Q2ΓΑQ2"!L2ΓΑL2"
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Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).
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Here, E and E
0
are the energies of the incoming and outgoing particles and E = E

0
due to the

energy conservation. We choose the transverse momentum of the outgoing particles to be along

the x- axis. Explicitly computing

s = (p1 + p2)
2
= 4E

2
,

t = (p1 � p
0
1)

2
=

= �

⇣
� sin ✓

p
E2 � (m0)2

⌘2
�

⇣p
E2 �m2 � cos ✓

p
E2 � (m0)2

⌘2
,

= �

⇣
E

2
�m

2
+ E

2
� (m

0
)
2
� 2 cos ✓

p
E2 �m2

p
E2 � (m0)2

⌘
,

= �2E
2

 
1�

m
2
+ (m

0
)
2

2E2
� cos ✓

r
1�

m2

E2

r
1�

(m0)2

E2

!
,

u = (p1 � p
0
2)

2
=

= �

⇣
sin ✓

p
E2 � (m0)2

⌘2
�

⇣p
E2 �m2 + cos ✓

p
E2 � (m0)2

⌘2
,

= �2E
2

 
1�

m
2
+ (m

0
)
2

2E2
+ cos ✓

r
1�

m2

E2

r
1�

(m0)2

E2

!
.

(17)

✏q,` ⇡ �
q,`
33 v/mZ0 (18)

H
0
= (1,2, 1/2) (19)

W
0
= (1,3, 0) (20)

4

Vector triplet model

[AG, Isidori, Marzocca] 
JHEP 1507 (2015) 142

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:

�L(T )
c.c. = � gqg`

2m2
V

h
(V �q)ij�

`

ab

⇣
ūiL�µd

j

L

⌘⇣
¯̀a
L�µ⌫

b

L

⌘
+ h.c.

i
, (7)

�L(T )
FCNC = � gqg`

4m2
V

�`

ab

h
�q

ij

⇣
d̄iL�µd

j

L

⌘
� (V �qV †)ij

⇣
ūiL�µu

j

L

⌘i⇣
¯̀a
L�µ`

b

L � ⌫̄aL�µ⌫
b

L

⌘
, (8)

�L(T )
�F=2 = �

g2q
8m2

V


(�q

ij
)2
⇣
d̄iL�µd

j

L

⌘2
+ (V �qV †)2ij

⇣
ūiL�µu

j

L

⌘2
�

, (9)

�L(T )
LFV = �

g2
`

8m2
V

�`

ab
�`

cd
(¯̀aL�µ`

b

L)(¯̀
c

L�µ`
d

L) , (10)

�L(T )
LFU = �

g2
`

8m2
V

(�2�`

ab
�`

cd
+ 4�`

ad
�`

cb
)(¯̀aL�µ`

b

L)(⌫̄
c

L�µ⌫
d

L) . (11)

2.2 Step II: simplified dynamical model

In order to generate �L(T )
4f in a dynamical way, we introduce the heavy spin-1 triplet, V a

µ

(a = 1, 2, 3), following the general simplified Lagrangian proposed in Ref. [42]. By means of
this approach we can describe both models in which the new vector is weakly coupled, such as
gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
simplified Lagrangian reads

LV = �1

4
D[µV

a

⌫]D
[µV ⌫]a +

m2
V

2
V a

µ V
µa + gHV a

µ (H
†T ai

$
Dµ H) + V a

µ J
a

µ , (12)

where T a = �a/2, D[µV
a

⌫] = DµV a
⌫ �D⌫V a

µ and DµV a
⌫ = @µV a

⌫ + g✏abcW b
µV

c
⌫ .

3

By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
e↵ = � 1

2m2
V

Ja

µJ
a

µ � g2
H

2m2
V

(H†T ai
$
Dµ H)(H†T ai

$
Dµ H)� gH

m2
V

(H†T ai
$
Dµ H)Ja

µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply

�g2
H
v2

4m2
V

✓
m2

WW+
µ W�

µ +
m2

Z

2
ZµZµ

◆✓
1 +

h

v

◆4

. (14)

This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
the heavy vector triplet. The relative shift in the heavy vector masses mV is only of O(g2Hm

2
W v

2
/m

4
V )

5

n � 2 (64)

b ! c⌧ ⌫̄⌧ (65)

b ! sµµ̄ (66)

L � W
0aµ

J
a
µ (67)
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of the Z 0 ! ⌧+⌧� branching ratio. The tension can be further reduced in the limit where the
assumption of narrow resonances (� ⌧ M), that is implicit in all present direct searches, no
longer holds.

2 The model

2.1 Step I: four-fermion operators

Our main assumption is that all the non-standard four-fermion interactions can be described by
the following e↵ective Lagrangian

�L(T )
4f = � 1

2m2
V

Ja

µJ
a

µ , (4)

where Ja
µ is a fermion current transforming as a SU(2)L triplet, built in terms of SM quarks

and lepton fields:

Ja

µ = gq�
q

ij

⇣
Q̄i

L�µT
aQj

L

⌘
+ g`�

`

ij

⇣
L̄i

L�µT
aLj

L

⌘
. (5)

Here �q,` are Hermitian flavor matrices and, by convention, �q

33 = �`

33 = 1.
We define Qi

L
and Li

L
to be the quark and lepton electroweak doublets in the flavor basis

where down-type quarks and charged-leptons are diagonal. We assume an approximate U(2)q ⇥
U(2)` flavor symmetry, under which the light generations of Qi

L
and Li

L
transform as 2q⇥1` and

1q ⇥ 2`, respectively, and all other fermions are singlets. We further assume that the underlying
dynamics responsible for the e↵ective interaction in Eq. (4) involves, in first approximation,
only third generation SM fermions (the left-handed 1q ⇥ 1` fermions). In this limit, the flavor

couplings in Eq. (5) are �q,`

ij
= �i3�3j . The corrections to this limit are expected to be generated

by appropriate U(2)q⇥U(2)` breaking spurions, connected to the generation of subleading terms
in the Yukawa couplings for the SM light fermions.

In the quark case, the leading U(2)q breaking spurion is a doublet, whose flavor structure is
unambiguously connected to the CKM matrix (V ) [29]. We can thus expand �q

ij
as follows:

�q

ij
= �i3�3j + (✏1�i3V̂3j + ✏⇤1V̂

⇤
3i�3j) + ✏2(V̂

⇤
3iV̂3j) + . . . , V̂3j = V3j � �3jV3j , (6)

with ✏2 = O(✏21). As we will discuss below, low-energy flavor-physics data imply ✏i ⌧ 1.
The breaking structure in the lepton sector is less clear, given the intrinsic ambiguity in

reconstructing the lepton Yukawa couplings under the (natural) assumption that neutrino masses
are generated by a see-saw mechanism.2 As we will discuss below, low-energy data are compatible
with the hypothesis that the leading breaking terms in the lepton sector transform as doublets
of U(2)`.

2An attempt to build a consistent neutrino mass matrix starting from an approximate U(2)` symmetry broken
by small U(2)` doublets has been discussed in Ref. [30].
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• Degenerate charged W’± and neutral Z’

• Quark FV controlled by a single matrix 

quark x lepton

lepton x lepton

quark x quark

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:
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gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
simplified Lagrangian reads

LV = �1

4
D[µV

a

⌫]D
[µV ⌫]a +

m2
V

2
V a

µ V
µa + gHV a

µ (H
†T ai

$
Dµ H) + V a

µ J
a

µ , (12)

where T a = �a/2, D[µV
a

⌫] = DµV a
⌫ �D⌫V a

µ and DµV a
⌫ = @µV a

⌫ + g✏abcW b
µV

c
⌫ .

3

By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
e↵ = � 1

2m2
V

Ja

µJ
a

µ � g2
H

2m2
V

(H†T ai
$
Dµ H)(H†T ai

$
Dµ H)� gH

m2
V

(H†T ai
$
Dµ H)Ja

µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply

�g2
H
v2

4m2
V

✓
m2

WW+
µ W�

µ +
m2

Z

2
ZµZµ

◆✓
1 +

h

v

◆4

. (14)

This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
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3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1
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, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)
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Here, E and E
0
are the energies of the incoming and outgoing particles and E = E

0
due to the

energy conservation. We choose the transverse momentum of the outgoing particles to be along
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q,`
33 v/mZ0 (18)

H
0
= (1,2, 1/2) (19)

W
0
= (1,3, 0) (20)
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Vector triplet model

[AG, Isidori, Marzocca] 
JHEP 1507 (2015) 142

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:
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c.c. = � gqg`

2m2
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2.2 Step II: simplified dynamical model

In order to generate �L(T )
4f in a dynamical way, we introduce the heavy spin-1 triplet, V a

µ

(a = 1, 2, 3), following the general simplified Lagrangian proposed in Ref. [42]. By means of
this approach we can describe both models in which the new vector is weakly coupled, such as
gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
simplified Lagrangian reads

LV = �1

4
D[µV

a

⌫]D
[µV ⌫]a +

m2
V

2
V a

µ V
µa + gHV a

µ (H
†T ai

$
Dµ H) + V a

µ J
a

µ , (12)

where T a = �a/2, D[µV
a

⌫] = DµV a
⌫ �D⌫V a

µ and DµV a
⌫ = @µV a

⌫ + g✏abcW b
µV

c
⌫ .

3

By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
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$
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µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply

�g2
H
v2

4m2
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✓
m2

WW+
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ZµZµ

◆✓
1 +

h

v
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. (14)

This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
the heavy vector triplet. The relative shift in the heavy vector masses mV is only of O(g2Hm
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of the Z 0 ! ⌧+⌧� branching ratio. The tension can be further reduced in the limit where the
assumption of narrow resonances (� ⌧ M), that is implicit in all present direct searches, no
longer holds.

2 The model

2.1 Step I: four-fermion operators

Our main assumption is that all the non-standard four-fermion interactions can be described by
the following e↵ective Lagrangian

�L(T )
4f = � 1

2m2
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Ja
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µ , (4)

where Ja
µ is a fermion current transforming as a SU(2)L triplet, built in terms of SM quarks

and lepton fields:
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Here �q,` are Hermitian flavor matrices and, by convention, �q

33 = �`

33 = 1.
We define Qi

L
and Li

L
to be the quark and lepton electroweak doublets in the flavor basis

where down-type quarks and charged-leptons are diagonal. We assume an approximate U(2)q ⇥
U(2)` flavor symmetry, under which the light generations of Qi

L
and Li

L
transform as 2q⇥1` and

1q ⇥ 2`, respectively, and all other fermions are singlets. We further assume that the underlying
dynamics responsible for the e↵ective interaction in Eq. (4) involves, in first approximation,
only third generation SM fermions (the left-handed 1q ⇥ 1` fermions). In this limit, the flavor

couplings in Eq. (5) are �q,`

ij
= �i3�3j . The corrections to this limit are expected to be generated

by appropriate U(2)q⇥U(2)` breaking spurions, connected to the generation of subleading terms
in the Yukawa couplings for the SM light fermions.

In the quark case, the leading U(2)q breaking spurion is a doublet, whose flavor structure is
unambiguously connected to the CKM matrix (V ) [29]. We can thus expand �q

ij
as follows:
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with ✏2 = O(✏21). As we will discuss below, low-energy flavor-physics data imply ✏i ⌧ 1.
The breaking structure in the lepton sector is less clear, given the intrinsic ambiguity in

reconstructing the lepton Yukawa couplings under the (natural) assumption that neutrino masses
are generated by a see-saw mechanism.2 As we will discuss below, low-energy data are compatible
with the hypothesis that the leading breaking terms in the lepton sector transform as doublets
of U(2)`.

2An attempt to build a consistent neutrino mass matrix starting from an approximate U(2)` symmetry broken
by small U(2)` doublets has been discussed in Ref. [30].
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• Degenerate charged W’± and neutral Z’

• Quark FV controlled by a single matrix 

quark x lepton

lepton x lepton

quark x quark
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3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale
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where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
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transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and
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the discussion su�ciently general under the main hypothesis of NP coupled predominantly to
third-generation left-handed quarks and leptons.

More explicitly, our working hypotheses to determine the initial conditions of the EFT, at a
scale ⇤ above the electroweak scale, are the following:

1. only four-fermion operators built in terms of left-handed quarks and leptons have non-
vanishing Wilson coe�cients;

2. the flavour structure is determined by the U(2)q ⇥ U(2)` flavour symmetry, minimally
broken by two spurions Vq ⇠ (2,1) and V` ⇠ (1,2);

3. operators containing flavour-blind contractions of the light fields have vanishing Wilson
coe�cients.

We first discuss the consequences of these hypotheses on the structure of the relevant e↵ective
operators and then proceed analysing the experimental constraints on their couplings.

2.1 The e↵ective Lagrangian

According to the first hypothesis listed above, we consider the following e↵ective Lagrangian at
a scale ⇤ above the electroweak scale

Le↵ = LSM �
1

v2
�q

ij
�`

↵�

h
CT (Q̄i

L�µ�
aQj

L
)(L̄↵

L�
µ�aL�

L
) + CS (Q̄i

L�µQ
j

L
)(L̄↵

L�
µL�

L
)
i
, (1)

where v ⇡ 246GeV. For simplicity, the definition of the EFT cuto↵ scale and the normalisation
of the two operators is reabsorbed in the flavour-blind adimensional coe�cients CS and CT .

The flavour structure in Eq. (1) is contained in the Hermitian matrices �q

ij
, �`

↵�
and follows

from the assumed U(2)q ⇥ U(2)` flavour symmetry and its breaking. The flavour symmetry
is defined as follows: the first two generations of left-handed quarks and leptons transform as
doublets under the corresponding U(2) groups, while the third generation and all the right-
handed fermions are singlets. Motivated by the observed pattern of the quark Yukawa couplings
(both mass eigenvalues and mixing matrix), it is further assumed that the leading breaking
terms of this flavour symmetry are two spurion doublets, Vq and V`, that give rise to the mixing
between the third generation and the other two [31,32]. The normalisation of Vq is conventionally
chosen to be Vq ⌘ (V ⇤

td
, V ⇤

ts), where Vji denote the elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. In the lepton sector we assume V` ⌘ (0, V ⇤

⌧µ) with |V⌧µ| ⌧ 1. We adopt as
reference flavour basis the down-type quark and charged-lepton mass eigenstate basis, where
the SU(2)L structure of the left-handed fields is

Qi

L =

✓
V ⇤
ji
uj
L

di
L

◆
, L↵

L =

✓
⌫↵
L

`↵
L

◆
. (2)

A detailed discussion about the most general flavour structure of the semi-leptonic operators
compatible with the U(2)q⇥U(2)` flavour symmetry and the assumed symmetry-breaking terms
is presented in Appendix A. The main points can be summarised as follows:
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Here, E and E
0
are the energies of the incoming and outgoing particles and E = E

0
due to the

energy conservation. We choose the transverse momentum of the outgoing particles to be along

the x- axis. Explicitly computing
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q,`
33 v/mZ0 (18)

H
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W
0
= (1,3, 0) (20)
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Vector triplet model

[AG, Isidori, Marzocca] 
JHEP 1507 (2015) 142

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:

�L(T )
c.c. = � gqg`

2m2
V

h
(V �q)ij�
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ab
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ūiL�µd
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i
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2.2 Step II: simplified dynamical model

In order to generate �L(T )
4f in a dynamical way, we introduce the heavy spin-1 triplet, V a

µ

(a = 1, 2, 3), following the general simplified Lagrangian proposed in Ref. [42]. By means of
this approach we can describe both models in which the new vector is weakly coupled, such as
gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
simplified Lagrangian reads

LV = �1

4
D[µV

a

⌫]D
[µV ⌫]a +

m2
V

2
V a

µ V
µa + gHV a

µ (H
†T ai

$
Dµ H) + V a

µ J
a

µ , (12)

where T a = �a/2, D[µV
a

⌫] = DµV a
⌫ �D⌫V a

µ and DµV a
⌫ = @µV a

⌫ + g✏abcW b
µV

c
⌫ .

3

By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
e↵ = � 1

2m2
V

Ja

µJ
a

µ � g2
H

2m2
V

(H†T ai
$
Dµ H)(H†T ai

$
Dµ H)� gH

m2
V

(H†T ai
$
Dµ H)Ja

µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply

�g2
H
v2

4m2
V

✓
m2

WW+
µ W�

µ +
m2

Z

2
ZµZµ

◆✓
1 +

h

v

◆4

. (14)

This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
the heavy vector triplet. The relative shift in the heavy vector masses mV is only of O(g2Hm

2
W v

2
/m

4
V )

5

n � 2 (64)

b ! c⌧ ⌫̄⌧ (65)

b ! sµµ̄ (66)

L � W
0aµ

J
a
µ (67)
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of the Z 0 ! ⌧+⌧� branching ratio. The tension can be further reduced in the limit where the
assumption of narrow resonances (� ⌧ M), that is implicit in all present direct searches, no
longer holds.

2 The model

2.1 Step I: four-fermion operators

Our main assumption is that all the non-standard four-fermion interactions can be described by
the following e↵ective Lagrangian

�L(T )
4f = � 1

2m2
V

Ja

µJ
a

µ , (4)

where Ja
µ is a fermion current transforming as a SU(2)L triplet, built in terms of SM quarks

and lepton fields:

Ja

µ = gq�
q
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aQj

L

⌘
+ g`�

`

ij

⇣
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L�µT
aLj

L

⌘
. (5)

Here �q,` are Hermitian flavor matrices and, by convention, �q

33 = �`

33 = 1.
We define Qi

L
and Li

L
to be the quark and lepton electroweak doublets in the flavor basis

where down-type quarks and charged-leptons are diagonal. We assume an approximate U(2)q ⇥
U(2)` flavor symmetry, under which the light generations of Qi

L
and Li

L
transform as 2q⇥1` and

1q ⇥ 2`, respectively, and all other fermions are singlets. We further assume that the underlying
dynamics responsible for the e↵ective interaction in Eq. (4) involves, in first approximation,
only third generation SM fermions (the left-handed 1q ⇥ 1` fermions). In this limit, the flavor

couplings in Eq. (5) are �q,`

ij
= �i3�3j . The corrections to this limit are expected to be generated

by appropriate U(2)q⇥U(2)` breaking spurions, connected to the generation of subleading terms
in the Yukawa couplings for the SM light fermions.

In the quark case, the leading U(2)q breaking spurion is a doublet, whose flavor structure is
unambiguously connected to the CKM matrix (V ) [29]. We can thus expand �q

ij
as follows:

�q

ij
= �i3�3j + (✏1�i3V̂3j + ✏⇤1V̂

⇤
3i�3j) + ✏2(V̂

⇤
3iV̂3j) + . . . , V̂3j = V3j � �3jV3j , (6)

with ✏2 = O(✏21). As we will discuss below, low-energy flavor-physics data imply ✏i ⌧ 1.
The breaking structure in the lepton sector is less clear, given the intrinsic ambiguity in

reconstructing the lepton Yukawa couplings under the (natural) assumption that neutrino masses
are generated by a see-saw mechanism.2 As we will discuss below, low-energy data are compatible
with the hypothesis that the leading breaking terms in the lepton sector transform as doublets
of U(2)`.

2An attempt to build a consistent neutrino mass matrix starting from an approximate U(2)` symmetry broken
by small U(2)` doublets has been discussed in Ref. [30].
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• Degenerate charged W’± and neutral Z’

• Quark FV controlled by a single matrix 

quark x lepton

lepton x lepton

quark x quark

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:

�L(T )
c.c. = � gqg`

2m2
V

h
(V �q)ij�

`

ab

⇣
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3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
the heavy vector triplet. The relative shift in the heavy vector masses mV is only of O(g2Hm
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son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is
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L =
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diL
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A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ
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µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be
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sb = O(|Vcb|) , λℓ
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the discussion su�ciently general under the main hypothesis of NP coupled predominantly to
third-generation left-handed quarks and leptons.

More explicitly, our working hypotheses to determine the initial conditions of the EFT, at a
scale ⇤ above the electroweak scale, are the following:

1. only four-fermion operators built in terms of left-handed quarks and leptons have non-
vanishing Wilson coe�cients;

2. the flavour structure is determined by the U(2)q ⇥ U(2)` flavour symmetry, minimally
broken by two spurions Vq ⇠ (2,1) and V` ⇠ (1,2);

3. operators containing flavour-blind contractions of the light fields have vanishing Wilson
coe�cients.

We first discuss the consequences of these hypotheses on the structure of the relevant e↵ective
operators and then proceed analysing the experimental constraints on their couplings.

2.1 The e↵ective Lagrangian

According to the first hypothesis listed above, we consider the following e↵ective Lagrangian at
a scale ⇤ above the electroweak scale

Le↵ = LSM �
1

v2
�q

ij
�`

↵�

h
CT (Q̄i

L�µ�
aQj

L
)(L̄↵

L�
µ�aL�

L
) + CS (Q̄i

L�µQ
j

L
)(L̄↵

L�
µL�

L
)
i
, (1)

where v ⇡ 246GeV. For simplicity, the definition of the EFT cuto↵ scale and the normalisation
of the two operators is reabsorbed in the flavour-blind adimensional coe�cients CS and CT .

The flavour structure in Eq. (1) is contained in the Hermitian matrices �q

ij
, �`

↵�
and follows

from the assumed U(2)q ⇥ U(2)` flavour symmetry and its breaking. The flavour symmetry
is defined as follows: the first two generations of left-handed quarks and leptons transform as
doublets under the corresponding U(2) groups, while the third generation and all the right-
handed fermions are singlets. Motivated by the observed pattern of the quark Yukawa couplings
(both mass eigenvalues and mixing matrix), it is further assumed that the leading breaking
terms of this flavour symmetry are two spurion doublets, Vq and V`, that give rise to the mixing
between the third generation and the other two [31,32]. The normalisation of Vq is conventionally
chosen to be Vq ⌘ (V ⇤

td
, V ⇤

ts), where Vji denote the elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. In the lepton sector we assume V` ⌘ (0, V ⇤

⌧µ) with |V⌧µ| ⌧ 1. We adopt as
reference flavour basis the down-type quark and charged-lepton mass eigenstate basis, where
the SU(2)L structure of the left-handed fields is

Qi

L =

✓
V ⇤
ji
uj
L

di
L

◆
, L↵

L =

✓
⌫↵
L

`↵
L

◆
. (2)

A detailed discussion about the most general flavour structure of the semi-leptonic operators
compatible with the U(2)q⇥U(2)` flavour symmetry and the assumed symmetry-breaking terms
is presented in Appendix A. The main points can be summarised as follows:
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Here, E and E
0
are the energies of the incoming and outgoing particles and E = E

0
due to the

energy conservation. We choose the transverse momentum of the outgoing particles to be along

the x- axis. Explicitly computing
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✏q,` ⇡ �
q,`
33 v/mZ0 (18)

H
0
= (1,2, 1/2) (19)

W
0
= (1,3, 0) (20)
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Vector triplet model

[AG, Isidori, Marzocca] 
JHEP 1507 (2015) 142

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:

�L(T )
c.c. = � gqg`

2m2
V

h
(V �q)ij�

`

ab

⇣
ūiL�µd

j

L

⌘⇣
¯̀a
L�µ⌫

b

L

⌘
+ h.c.

i
, (7)

�L(T )
FCNC = � gqg`

4m2
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�`

ab

h
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ij
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j
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2.2 Step II: simplified dynamical model

In order to generate �L(T )
4f in a dynamical way, we introduce the heavy spin-1 triplet, V a

µ

(a = 1, 2, 3), following the general simplified Lagrangian proposed in Ref. [42]. By means of
this approach we can describe both models in which the new vector is weakly coupled, such as
gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
simplified Lagrangian reads

LV = �1

4
D[µV

a

⌫]D
[µV ⌫]a +

m2
V

2
V a

µ V
µa + gHV a

µ (H
†T ai

$
Dµ H) + V a

µ J
a

µ , (12)

where T a = �a/2, D[µV
a

⌫] = DµV a
⌫ �D⌫V a

µ and DµV a
⌫ = @µV a

⌫ + g✏abcW b
µV

c
⌫ .

3

By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
e↵ = � 1

2m2
V

Ja

µJ
a

µ � g2
H

2m2
V

(H†T ai
$
Dµ H)(H†T ai

$
Dµ H)� gH

m2
V

(H†T ai
$
Dµ H)Ja

µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply

�g2
H
v2

4m2
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✓
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WW+
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2
ZµZµ

◆✓
1 +

h

v

◆4

. (14)

This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
the heavy vector triplet. The relative shift in the heavy vector masses mV is only of O(g2Hm

2
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b ! sµµ̄ (66)

L � W
0aµ

J
a
µ (67)
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of the Z 0 ! ⌧+⌧� branching ratio. The tension can be further reduced in the limit where the
assumption of narrow resonances (� ⌧ M), that is implicit in all present direct searches, no
longer holds.

2 The model

2.1 Step I: four-fermion operators

Our main assumption is that all the non-standard four-fermion interactions can be described by
the following e↵ective Lagrangian

�L(T )
4f = � 1

2m2
V

Ja

µJ
a

µ , (4)

where Ja
µ is a fermion current transforming as a SU(2)L triplet, built in terms of SM quarks

and lepton fields:

Ja

µ = gq�
q

ij
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Q̄i

L�µT
aQj

L

⌘
+ g`�

`

ij

⇣
L̄i

L�µT
aLj

L

⌘
. (5)

Here �q,` are Hermitian flavor matrices and, by convention, �q

33 = �`

33 = 1.
We define Qi

L
and Li

L
to be the quark and lepton electroweak doublets in the flavor basis

where down-type quarks and charged-leptons are diagonal. We assume an approximate U(2)q ⇥
U(2)` flavor symmetry, under which the light generations of Qi

L
and Li

L
transform as 2q⇥1` and

1q ⇥ 2`, respectively, and all other fermions are singlets. We further assume that the underlying
dynamics responsible for the e↵ective interaction in Eq. (4) involves, in first approximation,
only third generation SM fermions (the left-handed 1q ⇥ 1` fermions). In this limit, the flavor

couplings in Eq. (5) are �q,`

ij
= �i3�3j . The corrections to this limit are expected to be generated

by appropriate U(2)q⇥U(2)` breaking spurions, connected to the generation of subleading terms
in the Yukawa couplings for the SM light fermions.

In the quark case, the leading U(2)q breaking spurion is a doublet, whose flavor structure is
unambiguously connected to the CKM matrix (V ) [29]. We can thus expand �q

ij
as follows:

�q

ij
= �i3�3j + (✏1�i3V̂3j + ✏⇤1V̂

⇤
3i�3j) + ✏2(V̂

⇤
3iV̂3j) + . . . , V̂3j = V3j � �3jV3j , (6)

with ✏2 = O(✏21). As we will discuss below, low-energy flavor-physics data imply ✏i ⌧ 1.
The breaking structure in the lepton sector is less clear, given the intrinsic ambiguity in

reconstructing the lepton Yukawa couplings under the (natural) assumption that neutrino masses
are generated by a see-saw mechanism.2 As we will discuss below, low-energy data are compatible
with the hypothesis that the leading breaking terms in the lepton sector transform as doublets
of U(2)`.

2An attempt to build a consistent neutrino mass matrix starting from an approximate U(2)` symmetry broken
by small U(2)` doublets has been discussed in Ref. [30].
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• Degenerate charged W’± and neutral Z’

• Quark FV controlled by a single matrix 

quark x lepton

lepton x lepton

quark x quark
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ūiL�µu

j

L

⌘i⇣
¯̀a
L�µ`

b

L � ⌫̄aL�µ⌫
b

L

⌘
, (8)

�L(T )
�F=2 = �

g2q
8m2

V


(�q

ij
)2
⇣
d̄iL�µd

j

L

⌘2
+ (V �qV †)2ij

⇣
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4f in a dynamical way, we introduce the heavy spin-1 triplet, V a

µ

(a = 1, 2, 3), following the general simplified Lagrangian proposed in Ref. [42]. By means of
this approach we can describe both models in which the new vector is weakly coupled, such as
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By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
e↵ = � 1

2m2
V

Ja

µJ
a

µ � g2
H

2m2
V

(H†T ai
$
Dµ H)(H†T ai

$
Dµ H)� gH

m2
V

(H†T ai
$
Dµ H)Ja

µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is
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This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.
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son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale
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, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)
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Figure 3: The lines show the correlations among triplet and singlet operators in single-mediator models.
Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in red. Electroweak
singlet mediators are shown with the solid lines while triplets with dashed.

compensate for the radiative constraints (see Figure 1 bottom-right). In other words, in the
small �q

sb
scenario the tuning problem is moved from the �F = 2 sector to that of electroweak

observables. We will present an explicit realisation of the small �q

sb
scenario in Section 3.3.

3 Simplified models

In this section we analyse how the general results discussed in the previous section can be
implemented, and eventually modified adding extra ingredients, in three specific (simplified)
UV scenarios with explicit mediators.

The complete set of single-mediator models with tree-level matching to the vector triplet
and/or singlet V � A operators consists of: colour-singlet vectors B0

µ ⇠ (1,1, 0) and W 0
µ ⇠

(1,3, 0), colour-triplet scalars S1 ⇠ (3̄,3, 1/3) and S3 ⇠ (3̄,3, 1/3), and coloured vectors Uµ

1 ⇠

(3,1, 2/3) and Uµ

3 ⇠ (3,3, 2/3) [46]. The quantum numbers in brackets indicate colour, weak,
and hypercharge representations, respectively. In Figure 3 we show the correlation between
triplet and singlet operators predicted in all single-mediator models, compared to the regions
favoured by the EFT fit.

The plot in Figure 3 clearly singles out the case of a vector LQ, Uµ

1 , which we closely
examine in the next subsection, as the best single-mediator case. However, it must be stressed
that there is no fundamental reason to expect the low-energy anomalies to be saturated by the
contribution of a single tree-level mediator. In fact, in many UV completions incorporating one of
these mediators (for example in composite Higgs models, see Section 4), these states often arise
with partners of similar mass but di↵erent electroweak representation, and it is thus natural
to consider two or more of them at the same time. For this reason, and also for illustrative
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• Vector LQ singlet is the most successful single mediator. M ~ TeV, g33 ~ 1. 
Successful simplified models with multiple mediators exist, e.g. S1 + S3.
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However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z

0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions 2.
A crucial ingredient to circumvent the previous

issues was recently proposed in Ref. [47] in the con-
text of a “partial unification” model in which the
SM color and hypercharge are embedded into a
SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group. The latter re-
sembles the embedding of color as the diagonal sub-
group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.

III. GAUGE LEPTOQUARK MODEL

Let us consider the gauge group G ⌘ SU(4) ⇥
SU(3)0 ⇥ SU(2)L ⇥ U(1)0, and denote respectively
by H

↵
µ , G

0a
µ ,W

i
µ, B

0
µ the gauge fields, g4, g3, g2, g1

the gauge couplings and T
↵
, T

a
, T

i
, Y

0 the gener-
ators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8,
i = 1, 2, 3. The normalization of the genera-
tors in the fundamental representation is fixed by
TrT↵

T
� = 1

2�
↵� , etc. The color and hyper-

charge factors of the SM gauge group GSM ⌘

SU(3)c ⇥ SU(2)L ⇥ U(1)Y are embedded in the
following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag
and U(1)Y = (U(1)4 ⇥ U(1)0)diag, where SU(3)4 ⇥

U(1)4 ⇢ SU(4). In particular, Y =
q

2
3T

15 + Y
0,

with T
15 = 1

2
p
6
diag(1, 1, 1,�3).

The spontaneous breaking G ! GSM happens via
the scalar representations ⌦3 =

�
4, 3, 1, 1/6

�
and

⌦1 =
�
4, 1, 1,�1/2

�
, which can be represented re-

spectively as a 4 ⇥ 3 matrix and a 4-vector trans-

2 The resolution of both the RD(⇤) and RK(⇤) anomalies via
a PS leptoquark Uµ was recently put forth in Ref. [46]. In
this respect, we reach a di↵erent conclusion.

forming as ⌦3 ! U
⇤
4⌦3U

T
30 and ⌦1 ! U

⇤
4⌦1 under

SU(4) ⇥ SU(3)0. By means of a suitable scalar po-
tential it is possible to achieve the following vacuum
expectation value (vev) configurations [52]

h⌦3i =

0

BB@

v3p
2

0 0

0 v3p
2

0

0 0 v3p
2

0 0 0

1

CCA , h⌦1i =

0

BB@

0
0
0
v1p
2

1

CCA , (1)

ensuring the proper G ! GSM breaking. Un-
der GSM the scalar representations decompose as
⌦3 = (8, 1, 0) � (1, 1, 0) � (3, 1, 2/3) and ⌦1 =
(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real
color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p

2
v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to G/GSM and trans-
forming as U = (3, 1, 2/3), g0 = (8, 1, 0) and Z

0 =
(1, 1, 0) under GSM. From the scalar kinetic terms
one obtains [51, 52]

MU = 1
2g4

q
v
2
1 + v

2
3 , (2)

Mg0 = 1p
2

q
g
2
4 + g

2
3v3 , (3)
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q
3
2
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2
4 +

2
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q
v
2
1 +

1
3v

2
3 . (4)

Expressed in terms of the original gauge fields of the
group G, the massive gauge bosons read

U
1,2,3
µ =

1
p
2

�
H

9,11,13
µ � iH

10,12,14
µ

�
, (5)
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15
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q
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4 +

2
3g
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1

,

while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of GSM

prior to electroweak symmetry breaking

g
a
µ =

g3H
a
µ + g4G

0a
µp

g
2
4 + g

2
3

, Bµ =

q
2
3g1H

15
µ + g4B

0
µ

q
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2
4 +

2
3g

2
1

.

The matching with the SM gauge couplings reads

gs =
g4g3p
g
2
4 + g

2
3

, gY =
g4g1q
g
2
4 +

2
3g

2
1

, (6)

where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the
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glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p
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The gauge boson spectrum comprises three mas-
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.
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the mixing discussed below), are charged under the
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currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
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0 from SU(4)PS ! SU(3)c breaking with
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as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
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Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.
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Figure 1. Interactions of the SM fermions with the heavy vectors induced by the fermion mixing.

4 Low-energy phenomenology

The scope of this section is to discuss the main low-energy observables of the 4321 model, together
with the relevant constraints coming from electroweak precision tests and FCNC. Let us start by
outlining the main interactions of the new vectors with the SM fermions, described in terms of mix-
ing angles between the would-be SM fermions and their vector-like partners. The flavour structure
of our model, defined by our assumptions in Eq. (3.4), is such that (up to CKM rotations) each
SM family mixes with only one fermion partner, see Fig. 1 for illustration. The only non-trivial
source of flavour breaking is found in the W matrix, introduced in the previous section, which
is responsible for a misalignment between quarks and leptons in the leptoquark interactions. The
resulting vector leptoquark interactions with SM fermions closely follow those introduced in [35],
which were shown to provide a successful explanation of the b ! s`` and R(D(⇤)) anomalies. We
write these interactions in the mass basis in a similar fashion4
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, (4.1)
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and V the CKM matrix. The interactions of these new gauge bosons with SM fermions read
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(4.3)

4In this section we show only the interactions of the new gauge bosons with the SM fermions for illustration. Full
expressions, including also the couplings to vector-like fermions, can be found in App. A.7.

– 11 –

Admir Greljo | Theory confronting LFU data

15 broken generators 

2

However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z

0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions 2.
A crucial ingredient to circumvent the previous

issues was recently proposed in Ref. [47] in the con-
text of a “partial unification” model in which the
SM color and hypercharge are embedded into a
SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group. The latter re-
sembles the embedding of color as the diagonal sub-
group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.
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a PS leptoquark Uµ was recently put forth in Ref. [46]. In
this respect, we reach a di↵erent conclusion.
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ensuring the proper G ! GSM breaking. Un-
der GSM the scalar representations decompose as
⌦3 = (8, 1, 0) � (1, 1, 0) � (3, 1, 2/3) and ⌦1 =
(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real
color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p
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v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to G/GSM and trans-
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while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of GSM
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.
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ensuring the proper G ! GSM breaking. Un-
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The final breaking of GSM is obtained via the Higgs
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the
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implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.
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Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.
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4321 gauge sector

4321 fermionic content

• Class I: All three generations of SM 
fermions charged under 321.

• Class II: The third SM generation 
charged under 421.

Left-handed 
dominance!

• Mixing with 
the vector-
like fermion 
doublets. 
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1 Introduction

In the recent years the central question of flavour physics beyond the Standard Model (SM) has been
the following: “How is it possible to reconcile TeV-scale new physics (NP) (as suggested e.g. by

naturalness) with the absence of indirect signals in flavour changing neutral currents (FCNC)?”.

One possible answer was given by the principle of Minimal Flavour Violation [1], which allowed
for exciting NP at ATLAS and CMS while predicting less room for serendipity at LHCb. Somewhat
unexpectedly, we are faced with the fact that experimental data seem rather to suggest the opposite
situation. In fact, a coherent pattern of SM deviations in semileptonic B-decays, which goes under
the widely accepted name of “flavour anomalies", keeps building up since 2012 [2–13]. Were these
anomalies due to NP, they would certainly imply a shift of paradigm in flavour physics.

A unified explanation of the whole set of anomalous data minimally requires: i) a NP contribu-
tion in b ! sµµ neutral currents that interferes destructively with the SM and ii) a NP contribution
in charged currents that enhances the decay rates of b ! c⌧⌫ transitions. Despite many models be-
ing proposed so far for the combined explanation of the anomalies (see [14–54] for an incomplete
list), it is fair to say that the majority of these works suffer from various issues: neglect of key ob-
servables (both at low energy and high-pT ), missing UV completion, breakdown of the perturbative
expansion, unnatural and tuned values of the parameters, etc. The difficulties in constructing a vi-
able and coherent NP interpretation of the flavour anomalies (both in charged and neutral currents)
are due to the simultaneous presence of the following aspects of the phenomenological situation:

1. the NP contribution in b ! c⌧⌫ needs to be very large, since it must compete with a SM
tree-level process;

2. there is an absence of NP signals in direct searches at the LHC;

3. there are very severe constraints from flavour observables in pure hadronic channels, most
notably in �F = 2 transitions;

4. there are very severe constraints from flavour observables in pure leptonic channels, most
notably in processes violating lepton universality and lepton flavour.

Since the first point clearly contrasts with the remaining ones, finding a coherent NP framework to
explain all these facts remains a non-trivial challenge. However, the points above are also suggest-
ing in a (qualitative) way their own solutions. Indeed a viable NP scenario should:

1. contain a leptoquark with large flavour violating couplings in order to trigger the anomalous
semileptonic decays in charged currents;

2. only introduce new states that are heavy enough to escape direct detection;

– 1 –
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Figure 3. Leptoquark mediated one-loop diagrams contributing to Bs � Bs mixing. The symbol E
denotes a six-dimensional vector containing SM charged-leptons and their partners.

ii) Unitarity of the W matrix provides a GIM-like protection similar to that in the SM arising
from CKM unitarity.

In what follows we detail the model contributions to Bs and D mixing.

4.3.1 Bs � Bs mixing

The leading NP contribution to the mixing amplitude is given by the leptoquark box diagrams
shown in Fig. 3. The resulting leptoquark contribution follows a very similar structure as that of
the SM with a W±

µ boson (see e.g. [94]). Defining NP contributions to the Bs meson-anti-meson
mass difference, �Ms, as CLL

bs
⌘ �Ms/�MSM

s � 1, we find

CLL

bs = � g24
64⇡2

CU

1

(VtbV ⇤
ts
)2Rloop

SM

X

↵,�

�B

↵�
B

� F (x↵, x�) , (4.30)

with ↵ and � running over all the leptons, including the vector-like partners, and where Rloop
SM =p

2GF m2
W

⌘̂B S0(xt)/16⇡2 = 1.34 ⇥ 10�3, with S0(xt) ⇡ 2.37 being the Inami-Lim func-
tion [95]. In this expression F (x↵, x�) is a loop function defined as

F (x↵, x�) =
1

(1� x↵)(1� x�)

✓
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4
� 1

◆

+
x2↵ log x↵
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with x↵ = m2
↵/M

2
U

and �B
↵ = �b↵ �⇤

s↵, where � denote the leptoquark couplings to left-handed
fermions given in Eq. (A.50). The explicit form of �B

↵ in terms of fermion mixing angles reads

�B

↵ =
1

2
sin 2✓LQ sin ✓q3 sin ✓q12

�
sin2 ✓`3 �↵3 + cos2 ✓`3 �↵6 � sin2 ✓`2 �↵2 � cos2 ✓`2 �↵5

�
.

(4.32)

Note that, analogously to the SM case, the flavour parameter �B
↵ has the key property

P
↵
�B
↵ = 0,

related to the unitarity of the flavour rotation matrices (and to the assumed down-aligned flavour
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Figure 16. An example of the cascade decay process at the LHC leading to heavy-flavoured multi-
lepton + multi-jet final state signature.

third family, t, b, ⌧ and ⌫⌧ . Thus, the signature in the detector contains multiple jets and leptons
and is rich with b-tags, hadronic ⌧ -tags, etc. While the extraction of precise limits requires a
dedicated experimental analysis, we estimate the potential sensitivity in the current and near-future
datasets, by comparing with the existing R-parity conserving (RPC) and R-parity violating (RPV)
supersymmetry (SUSY) searches.

Using 36 fb�1 of 13 TeV pp collision data, the ATLAS collaboration has searched for sig-
natures involving multiple b-jets, high missing transverse momentum and either (at least) three
isolated leptons, or two isolated same-sign leptons [121]. Following this general selection, the
upper limits are set on the signal regions based on the number of b-jets, jets, leptons and Emiss

T
,

which are then interpreted in terms of simplified SUSY benchmarks. As an example, pair produc-
tion of gluinos, each decaying to a top pair and a neutralino, can be qualitatively compared to our
pp ! N2N2 ! (tt⌫)(tt⌫). Interpreting naively the exclusion limits, that is, neglecting any differ-
ences in acceptances between our model and the SUSY benchmarks, we conclude that the signal
rate for this process is . 5 fb. This search is already starting to probe the interesting parameter
space, see Fig. 14 (top right panel). Another relevant RPC example involves pair production of
stops, each decaying to t, W± and neutralino, and sets an upper limit on the cross section . 10 fb.
Finally, the limit from RPV searches on gluino pair production, where each decays to tbj, implies
an upper limit of . 15 fb.

In addition to these final states, the 4321 model predicts even more exotic multi-lepton plus
multi-jet signatures due to cascade decays among particles shown in Fig. 8 (left panel). An example
of such process is illustrated in Fig. 16. In this example, a pair of vector-like quarks is created by an
s-channel coloron, and one of them decays to vector-like lepton which eventually decays to three
SM fermions. The final state contains 3q3 + 5`3, or 5q3 + 3`3, where q3 = t, b and `3 = ⌫⌧ , ⌧ .

To sum up, the 4321 model predicts a plethora of novel signatures and calls for a dedicated
experimental effort.

– 38 –

• Exhaustive phenomenological studies 
show there is a prototype model with 
rich signatures at low- and high-pT.
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SU(3)×SU(2)×U(1) e τ

These three (families) of particles 
seems to be “identical copies” 
but for their mass ... 

 γ, g, W, Z

μ

That's exactly the same (misleading) argument we use to infer LFU...

The SM quantum numbers of the three families could be an “accidental” low-
energy property: the different families may well have a very different behavior 
at high energies, as signaled by their different mass 

e+ p+
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Introduction [more about LFU violations]

LFU: at long distances the 
only difference is the mass

but remember

Far apart at short distances!

PS1=PS(5)|z=z1
PS2=PS(5)|z=z2

PS3=PS(5)|z=z3

“De-unification” 
(= flavor deconstruction) 

of the gauge symmetry

Unification 
of quarks and leptons

The PS3 model

This construction can find a “natural” justification in the 
context of models with extra space-time dimensions

The 4D description is apparently more complex, but it 
allow us to derive precise low-energy phenomenological 
signatures (4D renormalizable gauge model)

Bordone, Cornella, 
Fuentes-Martin, GI, '17

[ PS ]3 = [ SU(4)×SU(2)L×SU(2)R ]3

G. Isidori –  BSM hopes from flavor physics & possible implications                  Higgs Hunting 2018, Paris, July 2018 

ψ1
L,R ψ2

L,R ψ3
L,R

[Taken from Isidori]

• 4D formulation:  
- One PS gauge group per family. 
- Hierarchical SSBs down to the 4321 
at the TeV scale.

• Natural realisation in extra dimensions

1712.01368

https://arxiv.org/abs/1712.01368
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Connections: Neutrino physics

Inverse seesaw mechanism
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• The options for the neutrino masses consistent with this picture are 
drastically narrowed.

1802.04274
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After electroweak symmetry breaking, the domi-
nantly third family SM fermions receive the follow-
ing masses [7]
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A. Quark Sector

The quark mass matrices have the same structure
as in Ref. [32]
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As mentioned previously, we have the freedom re-

maining to choose �(2)
q real and to fix the phase of

�d

H
such that Im(fu)/m0

t
= Im(fd)/m0

b
, making F

real. Comparing to the Wolfenstein parameteriza-
tion in Ref. [35], the CKM matrix can be fit by:

Vtd = A�3(1 � ⇢ � i⌘) = �F (�(1)
q )⇤ = 0.0080 �

i 0.0033 and Vts = �A�2 = �F�(2)
q = �0.041.

The U(2)q0 ⇥ U(2)u0 ⇥ U(2)d0 flavour symmetry
of the quark sector is softly broken by the spurion
bi-doublets Yu ⇠ (2,2,1), Yd ⇠ (2,1,2), and a sin-

gle spurion doublet V(i) = v3
m�

�(i)
q ⇠ (2,1,1) which

is entirely responsible for the communication of the
third to light generations. This setup nicely repro-
duces the Minimal U(2) picture of quark masses and
mixings proposed in Ref. [33]. The smallness of the
leading breaking spurion doublet V(i) can be un-
derstood as a consequence of large m� or perhaps

small �(i)
q , which is the only coupling violating the

light family quark number.
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these representations as ( L)T = (q03
L
`03
L
), ( u

R
)T =

(u03
R
⌫03
R
), and ( d

R
)T = (d03

R
e03
R
). This field con-

tent is summarized in Table II. Unlike the light
family fermions, the dominantly third family SM
fermions couple directly to the vector leptoquark Uµ

1
via gauge interactions.

Dominantly Light Family SM Fermions

Gauge Global

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

q
0i
L 1 3 2 1/6 1/3 0

u
0i
R 1 3 1 2/3 1/3 0

d
0i
R 1 3 1 -1/3 1/3 0
`
0i
L 1 1 2 -1/2 0 1
e
0i
R 1 1 1 -1 0 1

Dominantly Third Family SM Fermions

Gauge Global

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

 L 4 1 2 0 1/4 1/4
 

u

R 4 1 1 1/2 1/4 1/4
 

d

R 4 1 1 -1/2 1/4 1/4

TABLE II. Dominantly SM fermion content of the model
in the G-symmetric phase. The flavor index i = 1, 2 runs
over the 1st and 2nd family fermions, while the third
family is embedded in  L,  

u

R, and  
d

R.

In order to generate mixing between the third
and light family fermions, we introduce a vector-like
fermion representation �L,R = (4,1,2, 0), shown in
Table III. This representation decomposes under the
SM as �T

L,R
⌘ (Q0

L,R
, L0

L,R
), where Q0

L,R
and L0

L,R

are vector-like partners of the SM quark and lep-
ton doublets, respectively. The left-handed field �L

couples to the right-handed dominantly third fam-
ily SM fermions  u

R
and  d

R
via a Higgs insertion.

The right-handed field �R couples to the left-handed
dominantly light family SM quark doublets via ⌦3

insertions and to the left-handed dominantly light
family SM lepton doublets via ⌦1 insertions.

New Vector-like Fermions

Gauge Global

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

�L,R 4 1 2 0 1/4 1/4

TABLE III. Vector-like fermion representation.

Since the dominantly third family SM quarks and
leptons are unified into SU(4) multiplets, we get the
interesting prediction that m0

t
= m0

⌫⌧
and m0

b
= m0

⌧

if they receive mass only from the Higgs field. While
this approximation works quite well for the bottom
quark and tau lepton, the prediction that the top
quark and tau neutrino must have the same mass
is extremely inconsistent with experimental data. If
the dominantly third family SM fermions also re-
ceive contributions to their masses from the VEV
of �15, then there are four independent Yukawa

couplings and correct masses for all third family
SM fermions can be achieved. However, a large
fine-tuning is required to arrange a cancellation be-
tween the two terms contributing to the tau neu-
trino mass in order to obtain an experimentally ac-
ceptable value. This fine-tuning problem for neu-
trino masses in low scale SU(4) quark-lepton unifi-
cation models was solved by Ref. [7] by adding sin-
glet fermions to implement the inverse seesaw mech-
anism. Here, we follow this prescription and intro-
duce two right-handed dominantly light family SM
neutrinos ⌫0i

R
and three new right-handed fermions

Sa

R
which are singlets under G. This extension of the

fermion content is summarized in Table IV and we
discuss the details of the ISS mechanism in Section
III B.

Right Handed Singlet Fermions

Gauge Global

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

⌫
0i
R 1 1 1 0 0 1

S
a

R 1 1 1 0 0 -1

TABLE IV. Fermion singlets. The index i = 1, 2 (a =
1, 2, 3) is a flavor index for the gauge singlet fermion ⌫0R
(SR).

In addition, there are accidental global symme-
tries U(1)B0 and U(1)L0 , whose action on the mat-
ter fields are displayed in the last two columns of
the first four tables. The VEVs of ⌦3 and ⌦1 spon-
taneously break both the gauge and global sym-
metries, leaving two new global U(1)’s unbroken:

B = B0 + 1p
6
T 15 and L = L0

�

q
3
2T

15. For SM

particles, these unbroken U(1)’s correspond to ordi-
nary baryon and lepton number, respectively. These
symmetries protect proton stability and make the
active neutrinos massless. As will be discussed later
on, a soft breaking of U(1)L will lead to tiny neu-
trino masses in the context of the inverse seesaw
mechanism.
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• Disastrous prediction! Needs a fix.

• Connection: 
B-anomalies and the PMNS non-unitarity

meV
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Lepton number breaking spurion

Introduce a singlet

https://arxiv.org/abs/1802.04274
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FIG. 1. Schematic view of the Pati-Salam Cubed model de-

tailed in Section II. The horizontal dotted lines represent the

energy scales at which phase transitions occur. Indicated be-

tween the lines are the gauge symmetry of the corresponding

phase. Phase transitions marked with red arrows lead to po-

tentially sizeable stochastic GW signature (See Section III).

PS
3 model of Ref. [4] as a concrete example in what fol-

lows, though the idea generalizes to any series of related
SSBs that produce strongly first-order phase transitions.

II. MODEL EXAMPLE: PATI-SALAM CUBED

As a prototype example, we focus on the PS
3 model

first introduced in Ref. [4]. Here, the original Pati-Salam
gauge group is deconstructed to three sites PS

3
⌘ PS1⇥

PS2 ⇥PS3 where each copy acts on one family of the SM
fermions. In particular, the entire SM family, including
the right-handed neutrino, fits into two left- and right-

chiral multiplets,  (i)
L ⌘ (4,2,1)i and  (i)

R ⌘ (4,1,2)i,

embedding left-handed quark and lepton doublets, Q
(i)
L

and L
(i)
L , and right-handed singlets u

(i)
R , ⌫

(i)
R , d

(i)
R and e

(i)
R ,

respectively. The label i = 1, 2, 3 denotes the correspond-
ing gauge group PSi ⌘ [SU(4) ⇥ SU(2)L ⇥ SU(2)R]i.

The model undergoes through a series of spontaneous
symmetry breakings occurring at di↵erent energy scales
as illustrated in Fig. 1. The first breaking (after infla-
tion) is triggered by the vev of ⌃1 which is 4 of SU(4)1.1

The subsequent breakings to the diagonal subgroups of
neighbouring sites is achieved by the appropriate scalar
link fields in bifundamental representations, �L,R

ij and
⌦ij . More specifically, �ij ’s are in 2 of the correspond-
ing SU(2)i and 2̄ of SU(2)j , while similarly, ⌦ij is

1
We propose a slight variation of the original model breaking

[SU(2)R]1 before inflation e↵ectively solving the monopole prob-

lem of low-scale PS models []. PS0
1 in Fig. 1 is defined as

[SU(4) ⇥ SU(2)L ⇥ U(1)]1.

(4,2,1)i ⇥ (4̄, 2̄,1)j . Finally, the Higgs fields live at the
third site, H3 ⌘ (1,2, 2̄)3.

The higher-dimensional formulation of the model, in
which PS

3 emerges in four space-time dimensions, can
justify small scalar quartic couplings, which is crucial to
ensure hierarchical vevs and, at the same time, induce
strong first-order phase transition as shown later.

Below the scale ⇤II, the unbroken phase of the the-
ory, SM1+2 ⇥PS3, leads to an approximate U(2) flavour
symmetry observed in the SM at low-energies. The lower
bound on this scale, ⇤II & 103 TeV, follows from strin-
gent limits on flavour changing neutral currents (FCNC)
induced by the heavy gauge bosons coupling first two gen-
erations []. At this level, Yukawa interactions are only

allowed for the third family, L �  ̄(3)
L H3 

(3)
R , predict-

ing vanishing light-fermion masses and the CKM matrix
equal to identity. (The smallness of the tau neutrino mass
is achieved by the inverse seesaw mechanism [5].) The
perturbation to this picture is obtained by the higher-
dimensional operators

L23 =
1

⇤III
 ̄(2)

L ⌦23H3 
(3)
R + h.c. ,

L12 =
1

⇤2
II

 ̄(k)
L �L

k3H3�
R
3l 

(l)
R + h.c. ,

(1)

after the link fields acquire vevs. The leading U(2) break-
ing spurion, following from the first term, generates the
mixing of the 3rd and light families, |Vts| ⇠ h⌦23i /⇤23.
The light fermion masses are instead due to the second
term, yc ⇠

⌦
�L

23

↵ ⌦
�R

32

↵
/⇤2

12. The UV completion of
the e↵ective operators in Eq. (1) has been discussed in
Refs. [4, 5]. We assume the scales generating the oper-
ators to coincide with the preceding symmetry breaking
scales, ⇤III ⇠ h�23i and ⇤II ⇠ h�12i, respectively. From
here, it follows that the four-step breaking, i) 104 TeV,
ii) 103 TeV, iii) 102 TeV, and iv) 1 TeV, is well com-
patible with the observed pattern of fermion masses and
mixings at low-energies.2

As we will show later, the three SU(4) phase tran-
sitions naturally induce the stochastic GW signature
within the reach of next-generation interferometers.

III. GRAVITATIONAL WAVE CALCULATION

A. Toy Model

We follow standard techniques for computing the GW
spectra from first-order phase transitions [refs]. For con-
creteness, we calculate in a toy “4 to 3” model where
SU(4) is broken to SU(3) by the VEV of a complex scalar

2
Another independent argument to keep the first two SSBs close

to the bounds implied by FCNC is the avoid large tuning of the

Higgs mass which is only partially screened from the two sites.
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FIG. 2. Complete gravitational wave spectrum, which we term the Triglav signature, assuming three first-order phase transitions

in the Pati-Salam Cubed model. The second family peak is based on the benchmark point shown in Fig. 3, corresponding to

↵ ' 0.2 and �/H ' 500. The additional peaks are obtained by varying the vacuum expectation value of the toy model from

Section IIIA as well as the e↵ective relativistic degrees of freedom in the plasma, corresponding to a change in ↵ by the ratio

1.5 : 1 : 0.9, while �/H ' 500 is fixed for all three peaks. The projected experimental sensitivities are the power-law integrated

curves and not the experimental noise curves, see Appendix C for details.

⌃ in the fundamental representation of SU(4). The mat-
ter content includes one set of the doublets  L and  R,
also in the fundamental representation of SU(4). This
setup is expected to model well the first SSB in PS

3 at
the scale ⇤1 (see Fig. 1). The Lagrangian of this toy
model is

L =  i /D �
1

4
(F a

µ⌫)
2 + |Dµ⌃|

2 + µ
2
|⌃|

2
� �|⌃|

4
, (2)

with Dµ = @µ � igA
a
µT

a. The breaking SU(4) ! SU(3)
occurs when the complex scalar ⌃ acquires a VEV of
the form h⌃i = (0, 0, 0, v/

p
2)T . The 7 broken genera-

tors correspond to a massive vector leptoquark Uµ and
Z

0 gauge boson. The decomposition of ⌃ under the un-
broken SU(3) is 4 = 3 + 1, with the entire complex 3

and the imaginary part of 1 containing the leptoquark
and Z

0 goldstones, respectively. The remaining degree of
freedom Re⌃4 ⌘ �/

p
2 is a massive radial mode which

has a tree level potential of

V0(�, v, �) = �
1

2
�v

2
�

2 +
�

4
�

4
, (3)

where we have traded µ for the VEV defined as v =
µ/

p
�. Thus, the parameters of the model are g, �, and

v.
We study the dynamics of the phase transition and

compute the resulting GW spectrum using the full finite-
temperature e↵ective potential for �

Ve↵(g, �, v, �, T ) = V0 + VCW + VT 6=0 , (4)

where V0 is the tree level potential of Eq. (3) and VCW

is the one-loop Coleman-Weinberg correction

VCW (g, �, v, �) =
X

b

nb
m

4
b(�)

64⇡2

✓
ln

m
2
b(�)

µ
2
R

� Ca

◆
, (5)

which we have written here in Landau gauge using the
MS renormalization scheme which gives Ca = 3/2 (5/6)
for scalars (gauge bosons). The sum on b is over all
bosons which have a �-dependent mass and nb is the
total number of degrees of freedom of the boson. The
final piece VT 6=0 is the finite temperature correction to
the potential

VT 6=0(g, �, v, �, T ) =
T

4

2⇡2

X

b

nb Jb

✓
m

2
b(�)

T 2

◆

�
T

12⇡

X

b

n
L
b

⇣
(m2

b(�) +⇧b(T ))
3
2 � m

3
b(�)

⌘
,

(6)

which in the second line also includes a correction
from resummed Daisy diagrams which runs over scalars
and the longitudinal modes of gauge bosons with a �-
dependent mass. The inclusion of this contribution is
important as it acts to prevent symmetry restoration at
high temperatures and reduces the strength of the phase
transition due to a partial cancellation of the cubic terms
in � which provide the barrier between the false and true
vacua. The thermal function Jb(x2), the �-dependent
masses mb(�), and the Debye masses ⇧b(T ) are all given
in the supplemental material for our toy 4 to 3 model
(and for two other models for comparison).

• Hierarchical strongly first order phase 
transitions in the early Universe

• Footprint: Stochastic gravitational wave 
radiation with the characteristic three-
peaked signature (the Triglav signature).

1910.02014

https://arxiv.org/abs/1910.02014


11

Conclusions

New directions in model building 
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New connections /  Spectacular signatures

• B-anomalies showed the power of data to sparkle new ideas.

(1) Working models exist, however, the final judge is the experiment.

(1)


