

Theory confronting LFU data

Admir Greljo

LHCP2020, 26.05.2020

Motivation

NP in $b \rightarrow s\mu\mu$?

Premise

- B-anomalies hint physics beyond the SM(*)
 (*) compelling, yet inconclusive
- A call for a bottom-up model building adventure

A bottom-up approach

IR consistency checks

- **Q0**: Is there a consistent explanation of anomalies within the SM EFT while respecting all experimental constraints? [The SM EFT is a motivated framework that encompasses specific short-distance models at low-energies.]
- If yes, **Q1**: what generates the required higher-dimensional operators? What is an emerging set of new heavy mediators? Can they pass the new consistency checks, e.g. direct searches at the LHC?
- If yes, Q2: is there a working prototypical model that is fully-calculable and can be extrapolated to high energies?

A bottom-up approach

IR consistency checks

- **Q0**: Is there a consistent explanation of anomalies within the SM EFT while respecting all experimental constraints? [The SM EFT is a motivated framework that encompasses specific short-distance models at low-energies.]
- If yes, **Q1**: what generates the required higher-dimensional operators? What is an emerging set of new heavy mediators? Can they pass the new consistency checks, e.g. direct searches at the LHC?
- If yes, Q2: is there a working prototypical model that is fully-calculable and can be extrapolated to high energies?

UV insights and connections

- Q3: If such construction exists, how does it fit in the "UV picture"? Could it be linked to open problems of the SM such are the hierarchy, the flavour puzzle, etc.
- Q4: What connections with other sectors follow from this? Where should we look further? 2

Aditive Greistors Ino may project analysing the experimental constrants on their couplin e effective Lagrangian ing to the first hypothesis littled above we consider the following frequency of the standard by Carpbo (Firundo Missis) glo Abavers, the effective left of the considerable following frequencies and an above of the first hypothesis we considerable following frequencies and a solution of the first hypothesis we considerable following frequencies and an above of the first hypothesis we considerable following frequencies and a solution of the first hypothesis we considerable following frequencies and a solution of the first hypothesis we considerable following frequencies and a solution of the first hypothesis and the first hypothesis we considerable following frequencies and the first hypothesis and the first hypoth (11)at a scale Λ above the electroweak scale $L_{\text{eff}} = L_{\text{SM}} + \frac{1}{2} \lambda_{\mu}^{a} \lambda_{\mu}^{b} = C_{\mu} (Q_{\mu}^{a} Q_{\mu}^{a}) \lambda_{\mu}^{b} Q_{\mu}^{a} (P_{\mu}^{a} Q_{\mu}^{a}) \lambda_{\mu}^{a} (P_{\mu}^{a} Q_{\mu}^{a}) \lambda_{\mu}^{b} Q_{\mu}^{a} (P_{\mu}^{a} Q_{\mu}^{a}) \lambda_{\mu}^{b} Q_{\mu}^{a} (P_{\mu}^{a} Q_{\mu}^$ in the landing backwere were were the structure of the s opparate comparison with the theory of the providence of the prov $\begin{bmatrix} \delta_{i3} \delta_{3} t_{b} t_{b} = \delta_{\tau\tau} \\ = \delta_{i3} \delta_{3} t_{b} t_{b} \\ = \delta_{i3} \delta_{3} t_{b} \\ = \delta_{i3} \delta_{i3} t_{b}$ psons. The latter are well-with induction existing between the network of the network of the set o

Aditive Greistors Ino may proceed analysing the experimental constraints on their couplin effective Lagrangian ng to the first hypothesis lixtled above we consider the following filective Lagrangian (Carpello (Carpe (11)at a setal A abon the control of the setal opparate solution in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge, is $5 \le h$ is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the unitary gauge. It is the first of the second term in the term in the unitary gauge. It is the first of the second term in the term in the unitary gauge. It is the first of the second term in the term in term in the term in term in the term in ter effective instruction of the problem in the construction of the problem in the problem in

Admir Greljo | Theory confronting LFU data $\overline{4m_V^2} \lambda_{ab} \left[\lambda_{ij} \left(a_L^* \gamma_{\mu} a_L^* \right) - (V \lambda^4 V^+)_{ij} \left(u_L^* \gamma_{\mu} u_L^* \right) \right] \left(\ell_L^* \gamma_{\mu} \ell_L^* - \nu_L^* \gamma_{\mu} \nu_L^* \right) , \quad (8)$ perators containing tay dir-blind contractions of the light fields have value in the structure of the relevant effective the set of the structure of the relevant effective the set of the structure of the relevant effective the set of the structure of the relevant effective the set of the structure of the relevant effective the set of the (9)discussion and the proceed analysing the experimental constraints on their couplings. (10)(10)The effective Lagrangian The effective Lagrangian g_{ℓ}^{2} $g_{$ (11)(11)The above the scale of the scale of the scale of the second state of the scale of The corrections of the interm induces on unphysical (custodially invariant), shift in the W_{τ} and Z-boson masses a^{4} . μL_{L}^{β} $\left[1 + \frac{1}{2}\right]$, $\left[$

The prototype

- Vector LQ singlet option
- Massive vector crave an UV completion.
- This is the Pati-Salam leptoquark!
- Quark-lepton unification $\mathbf{4} = \mathbf{3}_q + \mathbf{I}_l$ resolves the charge quantisation puzzle.
- Low-scale Pati-Salam model possible (no proton decay). However, the original Pati-Salam leptoquark mass \geq PeV by FCNC, eg. K_L > mu e.
- How to achieve a successful TeV-scale quark-lepton unification?

"4321 models"

<u>1706.05033</u>, <u>1708.08450</u>, <u>1712.01368</u>, <u>1802.04274</u>, <u>1805.09328</u>, <u>1808.00942</u>, <u>1903.11517</u>, <u>1910.13474</u>, <u>2004.11376</u>, ...

The prototype: 4321

4321 gauge sector

 $G \equiv SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$

SSB: $\langle \Omega_3 \rangle, \langle \Omega_1 \rangle$ I5 broken generators

 $G_{\rm SM} \equiv SU(3)_c \times SU(2)_L \times U(1)_Y$

The prototype: 4321

4321 gauge sector

 $G \equiv SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$

SSB: $\langle \Omega_3 \rangle, \langle \Omega_1 \rangle$ I5 broken generators

 $G_{\rm SM} \equiv SU(3)_c \times SU(2)_L \times U(1)_Y$

4321 fermionic content

- **Class I**: All three generations of SM fermions charged under 321.
- **Class II**: The third SM generation charged under 421.

• Mixing with the vector-like fermion doublets. $q_i \otimes^{\langle \Omega_3 \rangle} U$

 \rightarrow Z' (1,1,0)

 \longrightarrow G' (8, 1, 0)

(3,1,2/3)Leptoquark

The prototype: 4321

4321 model

Contents

1	Introduction The 4321 model Cabibbo mechanism for leptoquarks Low-energy phenomenology			-
2				
3				
4				1
	4.1	Constra	raints on fermion mixing	13
	4.2	Semile	eptonic processes	13
		4.2.1	Charged currents	14
		4.2.2	Neutral currents	1:
		4.2.3	Lepton Flavour Violating transitions	1′
	4.3	Hadror	nic processes	13
		4.3.1	$B_s - \overline{B}_s$ mixing	19
		4.3.2	$D-\overline{D}$ mixing	2
	4.4	Lepton	nic processes	23
	4.5	Perturb	bativity	24
5	High- p_T signatures			2
	5.1	Resona	ances spectrum	2:
	5.2	Decay	channels	2
		5.2.1	Vector decays	2
		5.2.2	Fermion decays	28
	5.3	Collide	er constraints	3
		5.3.1	Coloron searches in $t\bar{t}$ and $b\bar{b}$ final states	3
		5.3.2	Z' search in $\tau^+\tau^-$ final state	34
		5.3.3	Leptoquark signatures	34
		5.3.4	Vector-like lepton production	30
		5.3.5	Vector-like quark production	3
		5.3.6	Multi-leptons plus multi-jets	3
6	Con	Conclusions		
A	Anatomy of the 4321 model			4
	A.1 Scalar potential			4
	A.2	A.2 Scalar spectrum		42
	A.3	A.3 Radial modes		4.
	A.4 Gauge boson spectrum		44	
	A.5 Gauge boson spectrum beyond minimal scalar sector		40	
	A.6 Fermion diagonalization to the mass basis		40	
	A.7	A.7 Vector-fermion interactions in the mass basis		
	A.8	A.8 Tri-linear gauge boson vertices		5
	A.9 Renormalisation group equations		52	
	A.10 $SU(4)$ generators			5.

1808.00942

Calculable, so calculate!

 Exhaustive phenomenological studies show there is a prototype model with rich signatures at low- and high-p_T.

The flavour puzzle & PS³

Flavour deconstruction

LFU: at long distances the only difference is the mass

Far apart at short distances!

```
[Taken from Isidori]
```

The flavour puzzle & PS³

Flavour deconstruction

1712.01368

LFU: at long distances the only difference is the mass

Far apart at short distances!

[Taken from Isidori]

► <u>The PS³ model</u>

 $[PS]^3 = [SU(4) \times SU(2)_L \times SU(2)_R]^3$

- 4D formulation:
 - One PS gauge group <u>per</u> family.
 - Hierarchical SSBs down to the 4321 at the TeV scale.
- Natural realisation in extra dimensions

B-

Connections: Neutrino physics

The options for the neutrino masses consistent with this picture are drastically narrowed.

$$(\psi^u_R)^T = (u^{\prime 3}_R \ \nu^{\prime 3}_R) \quad \bullet$$

$$m'_{t} = \frac{v_{\rm EW}}{\sqrt{2}} \left(y^{u}_{H} \cos\beta + \frac{1}{2\sqrt{6}} y^{u}_{\Phi} \sin\beta \right)$$
$$m'_{\nu_{\tau}} = \frac{v_{\rm EW}}{\sqrt{2}} \left(y^{u}_{H} \cos\beta - \frac{3}{2\sqrt{6}} y^{u}_{\Phi} \sin\beta \right)$$

Disastrous prediction! Needs a fix.

Inverse seesaw mechanism 1802.04274

Connections: Cosmology & GW

The Triglav signature 1910.02014

- Hierarchical strongly first order phase transitions in the early Universe
- Footprint: Stochastic gravitational wave radiation with the characteristic three-peaked signature (the Triglav signature).

• B-anomalies showed the power of data to sparkle new ideas.

New directions in model building

New connections / Spectacular signatures

⁽¹⁾ Working models exist, however, the final judge is the experiment.