CP violation in B decays

Jinlin Fu University of Milan On behalf of the LHCb collaboration

LHCP 2020 Online, May 25-30, 2020

European Research Council Established by the European Commission

Introduction

- CPV observed in K, B and D meson decays, well consistent with SM prediction
- But still too small to explain the absence of antimatter in the universe
- More searches for CPV are needed:

search for CPV in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decays arXiv:1912.10741

search for CPV in $B^+ \to \pi^+ \pi^- \pi^-$ decays PRL 124 (2020) 031801 PRD 101 (2020) 012006

Unitary triangles measurements, please see talk from Mark Whitehead

Previous measurement in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays

- Previous results 3.3σ for CPV, using triple product asymmetries (TPA)
- Update with more data set

Nature Phys. 13 (2017) 391-396

New measurement

New analysis of $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ decays with $6.6fb^{-1}$

yields: 27600 ± 200 , ~4 times previous

• Two approaches:

TPA with improved binning schemes

Unbinned energy test method

TPA approach

• Triple products in Λ_b^0 rest frame: $\Lambda_b^0: C_{\hat{T}} \equiv \overrightarrow{p}_p \cdot (\overrightarrow{p}_{\pi_{\text{fast}}} \times \overrightarrow{p}_{\pi^+}) \propto \sin \Phi$ $\bar{\Lambda}_b^0: \ \bar{C}_{\hat{T}} \equiv \overrightarrow{p}_{\bar{p}} \cdot (\overrightarrow{p}_{\pi_{\text{fast}}} \times \overrightarrow{p}_{\pi^-}) \propto \sin \bar{\Phi}$

P-odd asymmetries:

$$\begin{split} \Lambda_{b}^{0} &: \quad A_{\widehat{T}} = \frac{N_{A_{b}^{0}}(C_{\widehat{T}} > 0) - N_{A_{b}^{0}}(C_{\widehat{T}} < 0)}{N_{A_{b}^{0}}(C_{\widehat{T}} > 0) + N_{A_{b}^{0}}(C_{\widehat{T}} < 0)}, \\ \bar{\Lambda}_{b}^{0} &: \quad \bar{A}_{\widehat{T}} = \frac{N_{\bar{A}_{b}^{0}}(-\bar{C}_{\widehat{T}} > 0) - N_{\bar{A}_{b}^{0}}(-\bar{C}_{\widehat{T}} < 0)}{N_{\bar{A}_{b}^{0}}(-\bar{C}_{\widehat{T}} > 0) + N_{\bar{A}_{b}^{0}}(-\bar{C}_{\widehat{T}} < 0)} \end{split}$$

CP-violating observable:

$$a_{CP}^{\widehat{T}\text{-}\mathrm{odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right)$$

P-violating observable:

$$a_P^{\hat{T}\text{-}\mathrm{odd}} = \frac{1}{2}(A_{\hat{T}} + \bar{A}_{\hat{T}})$$

Improvement of binning schemes

Maximise the sensitivity of CPV with amplitude models

G.Durieux, JHEP 10 (2016) 005 G.Durieux, PRD 92 (2015) 076013

 S and P wave could interfere, and introduce P-odd CPV

neglect higher partial wave P, D

N(1440) 1/2 ⁺	$\Delta(1232) 3/2^+$
N(1520) 3/2-	$\Delta(1600) 3/2^+$
N(1535) 1/2 ⁻	$\Lambda(1620) 1/2^{-1}$
N(1650) 1/2 ⁻	A(1020) 1/2
N(1675) 5/2 ⁻	$\Delta(1700) 5/2$
N(1680) 5/2 ⁺	$\Delta(1750) 1/2^{+}$
N(1700) 3/2 ⁻	$\Delta(1900) 1/2^{-1}$
N(1710) 1/2+	$\Delta(1905) 5/2^+$
N(1720) 3/2+	$A(1910) 1/2^+$
N(1860) 5/2+	$\Lambda(1020) 3/2^+$
N(1875) 3/2 ⁻	$\Delta(1920) 5/2$
N(1880) 1/2+	A(1930) 5/2
N(1895) 1/2 ⁻	$\Delta(1940) 3/2^{-1}$
N(1900) 3/2+	$\Delta(1950) 7/2^+$
N(1990) 7/2 ⁺	$\Delta(2000) 5/2^+$
N(2000) 5/2 ⁺	

Improvement of binning schemes

arXiv:1912.10741

Maximise the sensitivity of CPV with amplitude models

G.Durieux, JHEP 10 (2016) 005 G.Durieux, PRD 92 (2015) 076013

Scheme A (new improved scheme)

16 bins

in polar and azimuthal angles of proton(Δ^{++}) in the $\Delta^{++}(N^{*+})$ rest frame

Scheme B, as previous measurement
 10 bins

in $|\Phi|$ angle between decay planes $\pi^+\pi^-_{\rm slow}$ and $p\pi^-_{\rm fast}$

TPA results

• PHSP integrated measurement: $a_{CP}^{\hat{T}-\text{odd}} = (-0.7 \pm 0.7 \pm 0.2) \%$ $a_{P}^{\hat{T}-\text{odd}} = (-4.0 \pm 0.7 \pm 0.2) \%$

consistent with CP symmetry

5.5 σ deviation from P symmetry

Split two samples: 1, $a_1(1260)^-$ dominated; 2, multiple N^{*+} dominated

Energy test

- A model-independent unbinned test
- Sensitive to local differences between two samples

$$T \equiv \frac{1}{2n(n-1)} \sum_{i \neq j}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i \neq j}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i=1}^{n} \sum_{j=1}^{\overline{n}} \psi_{ij}$$

$$\psi_{ij} = e^{-d_{ij}^2/2\delta^2}, d_{ij} \text{ distance between two candidates}$$

$$\delta \quad \text{distance scale}$$

$$C \quad \bullet \quad \text{CP test}$$

$$P \text{-odd: I+IV v.s. II + III}$$

$$P \text{-even: I+II v.s. III + IV}$$

Particle,
$$C_T > 0$$
Anti-particle, $-\bar{C}_T < 0$ P-even: I+II v.s. IPIIIIIP testParticle, $C_T < 0$ Anti-particle, $-\bar{C}_T > 0$ I+III v.s. II+IV

Energy test

- A model-independent unbinned test
- Sensitive to local differences between two samples

$$T \equiv \frac{1}{2n(n-1)} \sum_{i \neq j}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i \neq j}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i=1}^{n} \sum_{j=1}^{\overline{n}} \psi_{ij}$$

 $\psi_{ij} = e^{-d_{ij}^2/2\delta^2}$, d_{ij} distance between two candidates

 δ distance scale

Distance scale δ	$1.6 \ { m GeV^2}/c^4$	$2.7 \ { m GeV^2}/c^4$	$13 \ { m GeV^2}/c^4$
p-value (CP conservation, P even)	3.1×10^{-2}	2.7×10^{-3}	1.3×10^{-2}
p-value (CP conservation, P odd)	1.5×10^{-1}	6.9×10^{-2}	6.5×10^{-2}
p-value (P conservation)	1.3×10^{-7}	4.0×10^{-7}	$1.6 imes 10^{-1}$

CP test: highest significance 3.0 σ , combined P even <3 σ

P test: combined 5.3 σ

J. FU (UNIMI)

Amplitude analysis is needed

Previous measurement in $B^+ \rightarrow \pi^+ \pi^- \text{decays}$ PRD 90 (2014) 112004

Raw asymmetries localised in regions of Dalitz plot were observed

asymmetries may come from:

low mass s-wave contribution and $\rho(770)^0$ interference

 $\rho(770)^0$ and $\omega(782)$ mixing

 $\pi\pi \leftrightarrow KK$ rescattering

Amplitude analysis for CPV

Amplitude with CPV

$$A^{+} = \sum_{j}^{N} c_{j}^{+} F_{j}(m_{13}^{2}, m_{23}^{2}) \qquad A^{-} = \sum_{j}^{N} c_{j}^{-} F_{j}(m_{13}^{2}, m_{23}^{2})$$
$$c_{j}^{\pm} = (x_{j} \pm \Delta x_{j}) + i(y_{j} \pm \Delta y_{j}): \text{ complex coefficients. CP violating}$$
$$F_{j}: \text{ strong dynamics. CP conserving}$$

Three different methods to describe S-wave: Isobar model, K-matrix, quasi model independent approach (QMI)

Observables

$$\mathcal{A}_{CP}^{j} = \frac{|c_{j}^{-}|^{2} - |c_{j}^{+}|^{2}}{|c_{j}^{-}|^{2} + |c_{j}^{+}|^{2}} \qquad \qquad \mathcal{F}_{j} = \frac{\int_{\mathrm{DP}} \left(|A_{j}^{+}(m_{13}^{2}, m_{23}^{2})|^{2} + |A_{j}^{-}(m_{13}^{2}, m_{23}^{2})|^{2}\right) \mathrm{d}m_{13}^{2} \mathrm{d}m_{23}^{2}}{\int_{\mathrm{DP}} \left(|A^{+}(m_{13}^{2}, m_{23}^{2})|^{2} + |A^{-}(m_{13}^{2}, m_{23}^{2})|^{2}\right) \mathrm{d}m_{13}^{2} \mathrm{d}m_{23}^{2}}$$

Dalitz plots

Signal yields 20600 ± 1600 with $3fb^{-1}$

Rich phase space structures

 $f_0(500) \rho(770)^0, f_2(1270)$

 $\pi\pi \leftrightarrow KK$ rescattering in $1.0 < m_{\pi\pi} < 1.5 GeV$

Numerical results

• \mathcal{F}_i in %: dominant contributions from $\rho(770)^0$ and S-wave

Component	Isobar	K-matrix	\mathbf{QMI}
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 0.4 \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$
$\omega(782)$	$0.50 \pm 0.03 \pm 0.01 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57 \pm 0.10 \pm 0.12 \pm 0.12$
$f_2(1270)$	$9.0\ \pm 0.3\ \pm 0.7\ \pm 1.4$	$9.3\ \pm 0.4\ \pm 0.6\ \pm 2.4$	$9.6\ \pm 0.4\ \pm 0.7\ \pm 3.9$
$ ho(1450)^{0}$	$5.2\ \pm 0.3\ \pm 0.2\ \pm 1.9$	$10.5\ \pm 0.7\ \pm 0.8\ \pm 4.5$	$7.4\ \pm 0.5\ \pm 3.9\ \pm 1.1$
$ ho_{3}(1690)^{0}$	$0.5\ \pm 0.1\ \pm 0.1\ \pm 0.3$	$1.5\ \pm 0.1\ \pm 0.1\ \pm 0.4$	$1.0\ \pm 0.1\ \pm 0.5\ \pm 0.1$
S-wave	$25.4 \pm 0.5 \pm 0.5 \pm 3.6$	$25.7 \pm 0.6 \pm 2.6 \pm 1.4$	$26.8 \pm 0.7 \pm 2.0 \pm 1.0$

• \mathcal{A}_{CP}^{j} in %: large CPV from $f_2(1270)$ and S-wave, but no asymmetries from $\rho(770)^0$

Component	Isobar	K-matrix	\mathbf{QMI}
$ ho(770)^{0}$	$+0.7 \pm 1.1 \pm 0.6 \pm 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm 1.7 \pm 2.3 \pm 1.6$
$\omega(782)$	$-4.8 \pm \ 6.5 \pm \ 1.3 \pm \ 3.5$	$-6.2\pm~8.4\pm~5.6\pm~8.1$	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm \ 6.1 \pm \ 1.5 \pm \ 4.4$	$+42.8 \pm \ 4.1 \pm \ 2.1 \pm \ 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$ ho(1450)^{0}$	$-12.9 \pm 3.3 \pm 3.6 \pm 35.7$	$+9.0\pm \ \ 6.0\pm10.8\pm45.7$	$-15.5 \pm \ 7.3 \pm 14.3 \pm 32.2$
$ ho_3(1690)^0$	$-80.1 \pm 11.4 \pm 7.8 \pm 24.1$	$-35.7 \pm 10.8 \pm \ 8.5 \pm 35.9$	$-93.2 \pm 6.8 \pm 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 1.0 \pm 1.9$	$+15.8 \pm 2.6 \pm 2.1 \pm 6.9$	$+15.0 \pm 2.7 \pm 4.2 \pm 7.0$

New CPV pattern $\rho(770)^0$

Very small asymmetries in mass and helicity angle distributions

New CPV pattern $\rho(770)^0$

• But large asymmetries below and above $\rho(770)^0$ mass

asymmetries change sign cross $\rho(770)^0$ mass perfect cancellation

New CPV pattern $\rho(770)^0$

• But large asymmetries below and above $\rho(770)^0$ mass

- Characteristic pattern due to S- and P- wave interference
- Interference term proportional to $\cos \theta_{\text{hel}}$

CPV in $f_2(1270)$

- First observation for CPV in process involving a tensor
- A very large CP asymmetry of ~40%

Robust to systematic effects

S-wave results

Good agreement between three approaches

Similar CPV pattern for the three approaches

CPV in B decays

19

Summary

Multibody decays are an interesting place to search for CPV

rich phase space structures would improve sensitivity

- Parity violation observed in $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ decays, but no evidence for CPV
- Observation of sources of CPV in $B^+ \rightarrow \pi^+ \pi^- \pi^-$ decays

new CPV pattern of $\rho(770)^0$

CPV in process with $f_2(1270)$

CPV in S-wave in low mass region

Thank you!

BACK UP