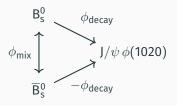
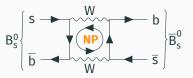


# Measurement of the CP-violating phase $\phi_{\rm s}$ in the ${\rm B^0_s} ightarrow {\rm J}/\psi\,\phi$ channel at 13 TeV by CMS

## **Alberto Bragagnolo**<sup>a</sup>, on behalf of the CMS Collaboration **LHCP 2020 – 29/05/2020**


<sup>a</sup>University & INFN Padova (IT)

# Introduction


## Motivations

- $\phi_s$  is a CPV phase arising from the **interference** between  $B_s^0$  decays proceeding directly and through  $B_s^0 - \overline{B}_s^0$  mixing to a CP final state
- + SM prediction:  $\phi_{\rm S}\simeq -2\beta_{\rm S}=-36.96^{+0.84}_{-0.72}~{\rm mrad}$  [CKMfitter]
- New Physics can **change** the value of  $\phi_s$  up to  $\sim 10\%$  via new particles contributing to the  $B_s^0 \overline{B}_s^0$  mixing [JHEP04(2010)031]
- +  ${
  m B_s^0} 
  ightarrow {
  m J}/\psi \, \phi$  is the golden channel to measure  $\phi_{
  m s}$ 
  - No direct CPV
  - Only one CPV phase
  - Easy to reconstruct with high S/B
- Several other interesting observables measurable with the same analysis:  $\Gamma_s,~\Delta\Gamma_s,~|\lambda|,~\Delta m_s^2$

• 
$$\lambda = \frac{q}{p} \frac{\overline{A}_{f.s.}}{A_{f.s.}}, |B_{L,H}\rangle = p|B_s^0\rangle \pm q|\overline{B}_s^0\rangle$$



$$\phi_{\rm s}=\phi_{\rm mix}-2\phi_{
m decay}$$



Alberto Bragagnolo

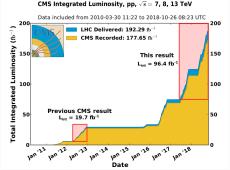
Measurement of  $\phi_{\rm s}$  in the B<sub>s</sub> ightarrow J/ $\psi \phi$  channel at 13 TeV by CMS

#### Measurement ingredients

$$\begin{aligned} \mathbf{a}_{CP}(\mathbf{t}) \propto \eta_{\mu\mu KK} \sin \left(\phi_{s}\right) \sin \left(\Delta \mathbf{m}_{s} \mathbf{t}\right) \\ \text{sensitivity} = \mathbf{f}\left(\sqrt{\frac{\mathbf{P}_{tag}\mathbf{S}}{2}} \sqrt{\frac{\mathbf{S}}{\mathbf{S}+\mathbf{B}}} \cdot \mathbf{e}^{-\frac{\sigma_{t}^{2} \Delta m_{s}^{2}}{2}}\right) \end{aligned}$$

- 1. **Angular analysis** to separate the different CP eigenstate of the final state
  - $\psi_{\mathsf{T}}$ : helicity angle of K<sup>+</sup> in the  $\phi$  rest frame
  - +  $heta_{
    m T}$ : polar angle of  $\mu^+$  in the J/ $\psi$  rest frame
  - +  $\phi_{\mathrm{T}}$ : azimuthal angle of  $\mu^+$  in the J/ $\psi$  rest frame
- 2. Excellent time resolution to see the fast  $B_s^0 \overline{B}_s^0$  oscillation
- 3. Highly efficient flavour tagging to infer the initial B<sup>0</sup><sub>s</sub> flavour
- 4. As much statistics as possible (with good S/N)

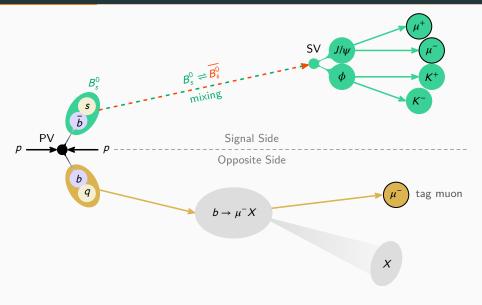



Alberto Bragagnolo

Measurement of  $\phi_{\rm S}$  in the  ${\rm B_S} 
ightarrow {\rm J}/\psi ~\phi$  channel at 13 TeV by CMS

# **Candidate selection**

Trigger:  ${\rm J}/\psi \rightarrow \mu^+\mu^-$  candidate plus an additional muon


- The additional muon is used to  ${\bf tag}$  the flavour of the  ${\rm B}^0_{\rm S},$  via  ${\rm b}\to\mu^-$  X decays of the other  ${\rm b}$
- However, the requirement for a third muon lowers the rate of selected events
- + Not to apply a displacement cut on the  ${\rm J}/\psi \rightarrow \mu^+\mu^-$  at HLT level

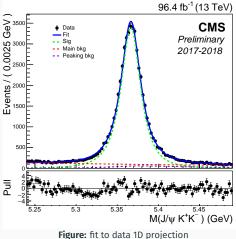


#### This trigger improves the tagging efficiency at the cost of the reduced number of signal events

Alberto Bragagnolo

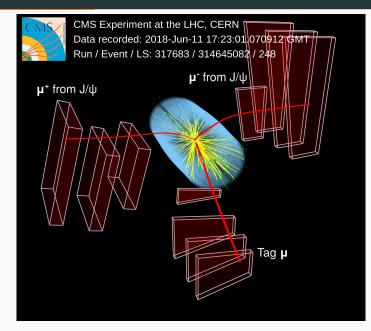
#### Schematic representation of an event




Alberto Bragagnolo

Measurement of  $\phi_{\rm s}$  in the B<sub>s</sub>  $\rightarrow$  J/ $\psi \phi$  channel at 13 TeV by CMS

## **Offline selection**


| Offline selection                                                                                                                                                         |                                                                   |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| $\begin{array}{c} p_{T}(\mu) \\  \eta(\mu)  \\ p_{T}(K) \\  \eta(K)  \\ \left  m(\mu^{+}\mu^{-}) - m_{J/\psi}^{PDG} \right  \\ m(K^{+}K^{-}) - m_{PDG}^{PDG} \end{array}$ | ≥ 3.5 GeV<br>≤ 2.4<br>≥ 1.2 GeV<br>≤ 2.5<br>< 150 MeV<br>< 10 MeV |  |  |  |  |  |
| $\begin{array}{c} p_{T}(B_{s}^{0}) \\ \mathbf{ct}(B_{s}^{0}) \\ B_{s}^{0} \rightarrow J/\psi \ \phi \ Vtx \ prob \\ m(\mu^{+}\mu^{-}K^{+}K^{-}) \end{array}$              | ≥ 11 GeV<br>≥ <b>70 μm</b><br>≥ 0.1%<br>[5.24, 5.49] GeV          |  |  |  |  |  |

- +  $\mathcal{L}_{int} = 96.4 \, \text{fb}^{-1}$  collected in 2017 and 2018
- $\cdot$  Number of signal  $B_s^0 = 48\,500$ 
  - Number of candidates in Run-1: 49 200



- + Vertex fit performed with  ${\rm J}/\psi$  mass constraint
- Cuts to enhance purity S/(S+B)

## Example of a candidate event



# Efficiencies

## Proper decay length efficiency

- The efficiency in selecting and reconstructing a  $B^0_{\mbox{\scriptsize S}}$  decay depends on of the decay length
- To proper fit the decay rate model we need a parametrization of the decay length efficiency
- Efficiency is evaluated with simulated samples, **separately** for 2017 and 2018, and fitted in the ct range **0.007-0.5 cm**

 $\epsilon(ct) = e^{-a \cdot ct} \cdot Chebychev4(ct)$ 

• The procedure is **validated** by fitting the  $B^{\pm}$  lifetime in the  $B^{\pm} \rightarrow J/\psi \ K^{\pm}$  **control channel**, in eight different data taking periods, each roughly equivalent in statistics to the  $B_s^0$  sample

| Data set | $c	au_{B^+}$ [ $\mu$ m] | Pull w.r.t PDG [s.d.] |
|----------|-------------------------|-----------------------|
| 2018A    | 489.3 ± 2.0             | -0.4                  |
| 2018B    | $495.7 \pm 2.7$         | +1.5                  |
| 2018C    | $489.2\pm1.4$           | -1.4                  |
| 2018D    | $493.2 \pm 1.3$         | +1.2                  |
| 2018     | $492.78\pm0.97$         | +1.1                  |
| 2017A    | 493.8 ± 2.4             | +1.0                  |
| 2017B    | $494.8\pm3.5$           | +1.0                  |
| 2017C    | $494.7\pm2.3$           | +1.4                  |
| 2017D    | $489.5 \pm 1.7$         | -0.8                  |
| 2017     | $492.9\pm1.1$           | +0.5                  |

#### Alberto Bragagnolo

- Detector acceptance and event selection lead to non uniform angular efficiency
- 3D angular efficiency is evaluated in bins of  $\cos \theta_{\rm T}$ ,  $\cos \psi_{\rm T}$  and  $\phi_{\rm T}$ , separately for 2017 and 2018, using simulated samples
  - **Binning**: 70 bins for  $\cos \theta_{\rm T}$  and  $\cos \psi_{\rm T}$ , and 30 for  $\phi_{\rm T}$
- The efficiency function is parameterized with spherical harmonics and Legendre polynomials up to order six

# Flavour tagging

- Tagger: opposite-side (OS) muon
  - Tagging feature: muon charge
  - + The muon is selected already at trigger level  $\rightarrow$  very high efficiency
- **Optimized** in  $B^0_s \to J/\psi \phi$  simulated events and **calibrated** in data using  $B^\pm \to J/\psi K^\pm$  self-tagging decays
- The **figure of merit** is the tagging power  $P_{tag} = \epsilon_{tag} D_{tag}^2 = \epsilon_{tag} (1 2 \omega_{tag})^2$ 
  - +  $\epsilon_{tag} = N_{tag}/N_{tot}$  , tagging efficiency ( $N_{tag} = N_{corr.tag} + N_{mistag}$ )
  - +  $\omega_{\mathrm{tag}} = \mathrm{N}_{\mathrm{mistag}}/\mathrm{N}_{\mathrm{tag}}$  , mistag fraction
- Mistag probability is evaluated on per-event basis with a dedicated Deep Neural Network

## **OS-muon selection**

| Reconstruction                         | Global muon <sup>a</sup> |
|----------------------------------------|--------------------------|
| p <sub>T</sub>                         | $\geq$ 2.0 GeV           |
| $ \eta $                               | $\leq$ 2.4               |
| IP <sub>z</sub> w.r.t. PV              | $\leq$ 1.0 cm            |
| $\Delta R_{\eta,\phi}$ wrt $B^{0}_{s}$ | $\geq 0.4$               |
| DNN vs fakes from hadrons              | Loose WP <sup>b</sup>    |

<sup>a</sup> Global muon = reconstructed with information from both tracker and muon system

<sup>b</sup>  $\epsilon$ (muons) = 98%,  $\epsilon$ (hadrons) = 33% evaluated on Global muon candidates

- Reconstructed b meson tracks excluded
- · Dedicated discriminator for soft muons, trained with muons from simulated samples
  - · Signal: genuine muon from b hadron
  - Background: fake muons (mostly K $^{\pm}, \pi^{\pm}$ )
- The muon selection is overall loose for maximum efficiency
- · Performance using the muon charge as tagging feature (without per-event mistag)
  - $\epsilon_{\rm tag} \sim 50\%$
  - $\omega_{\rm tag}\sim 30\%$
  - \*  $P_{tag}\sim7\%$

Alberto Bragagnolo

#### Measurement of $\phi_s$ in the $B_s \rightarrow J/\psi \phi$ channel at 13 TeV by CMS

### Per-event mistag probability

- Per-event mistag probability enhances the total tagging performance
- A fully connected **Deep Neural Network** is used to distinguish mistagged events and evaluate per-event mistag probability **at the same time** 
  - Input features: muon variables (p<sub>T</sub>, d<sub>xy</sub>, σ<sub>d<sub>xy</sub></sub>, ΔR, ...) and "cone" variables (Iso<sub>μ</sub>, Q<sub>cone</sub>, p<sub>T,rel</sub>, energy ratio, ...)
- The DNN is constructed in such a way that the **output score**  $\mathbf{f}_{dnn}$  is equal to the probability of tagging the event correctly

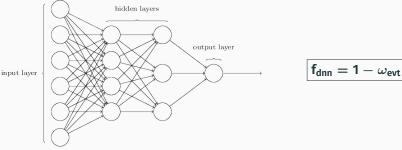
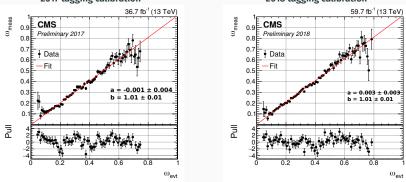




Figure: schematic representation of a fully connected DNN

## Per-event mistag calibration

•  $\omega_{evt}$  is calibrated in data with self-tagging  $B^\pm \to J/\psi K^\pm$  decays with a linear function  $w_{fit} = a + b \cdot w_{evt}$ 



2017 tagging calibration

2018 tagging calibration

- · Excellent agreement between prediction and measurement
- + DNN and calibration are stable  $\rightarrow$  very small systematic uncertainties

+ Tagging performances evaluated in  ${\rm B}^\pm \to {\rm J}/\psi\,{\rm K}^\pm$  data

| Data set $\epsilon_{tag}$ |                                      | $\omega_{tag}$                        | P <sub>tag</sub>                                                      |  |
|---------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------------------------|--|
| 2017<br>2018              | $(45.7\pm0.1)\%$<br>$(50.9\pm0.1)\%$ | $(27.1 \pm 0.1)\%$ $(27.3 \pm 0.1)\%$ | $egin{array}{l} ({f 9.6}\pm 0.1)\% \ ({f 10.5}\pm 0.1)\% \end{array}$ |  |
| Run-1                     | $(8.31 \pm 0.03)\%$                  | $(30.2 \pm 0.3)\%$                    | $(1.31 \pm 0.03)\%$                                                   |  |

- High efficiency due to the additional muon required at trigger level
- Low dilution thanks to the DNN based per-event mistag probability
- + Final performance, normalized by the event rate,  $\sim$  **50% higher** w.r.t. Run-1

# Maximum likelihood fit and results

## Fit model

 $P = N_{sgn}P_{sgn} + N_{bkg}P_{bkg} + N_{peak}P_{peak}$ 

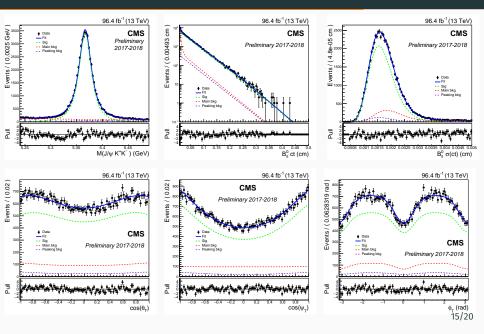
 $\mathsf{P}_{\mathsf{sgn}} = \epsilon(\mathsf{ct}) \, \epsilon(\Theta) \, [\mathsf{f}(\Theta,\mathsf{ct},\alpha) \otimes \frac{\mathsf{G}(\mathsf{ct},\sigma_{\mathsf{ct}})]}{\mathsf{G}(\mathsf{ct},\sigma_{\mathsf{ct}})]} \, \mathsf{P}_{\mathsf{sgn}}(\mathsf{m}_{\mathsf{B}^0_{\mathsf{s}}}) \, \mathsf{P}_{\mathsf{sgn}}(\sigma_{\mathsf{ct}}) \, \mathsf{P}_{\mathsf{sgn}}(\xi)$ 

- $\epsilon(ct) \epsilon(\Theta)$ : efficiency functions
- $f(\Theta, ct, \alpha)$ : differential decay rate PDF
- G(ct,  $\sigma_{ct}$ ): Gaussian resolution function

- P(m<sub>B<sup>0</sup><sub>c</sub></sub>): mass PDFs
- $P(\sigma_{ct})$ : decay length uncertainty PDFs
- $P(\xi)$ : tag distribution

 $\mathsf{P}_{\mathsf{bkg}} = \mathsf{P}_{\mathsf{bkg}}(\cos\theta_{\mathsf{T}}, \phi_{\mathsf{T}}) \, \mathsf{P}_{\mathsf{bkg}}(\cos\psi_{\mathsf{T}}) \, \mathsf{P}_{\mathsf{bkg}}(\mathsf{ct}) \, \mathsf{P}_{\mathsf{bkg}}(\mathsf{m}_{\mathsf{B}^0_{\mathsf{S}}}) \, \mathsf{P}_{\mathsf{bkg}}(\sigma_{\mathsf{ct}}) \, \mathsf{P}_{\mathsf{bkg}}(\xi)$ 

•  $P_{bkg}(\cos \theta_T, \phi_T)$ ,  $P_{bkg}(\cos \psi_T)$ ,  $P_{bkg}(ct)$ : background angular and lifetime PDFs


 $\mathsf{P}_{\mathsf{peak}} = \mathsf{P}_{\mathsf{peak}}(\cos\theta_{\mathsf{T}},\phi_{\mathsf{T}}) \,\mathsf{P}_{\mathsf{peak}}(\cos\psi_{\mathsf{T}}) \,\mathsf{P}_{\mathsf{peak}}(\mathsf{ct}) \,\mathsf{P}_{\mathsf{peak}}(\mathsf{m}_{\mathsf{B}^0_{\mathsf{c}}}) \,\mathsf{P}_{\mathsf{peak}}(\sigma_{\mathsf{ct}}) \,\mathsf{P}_{\mathsf{peak}}(\xi)$ 

- $P_{peak}$  models the **peaking background** from  $B^0 \rightarrow J/\psi K^{*0} \rightarrow \mu^+\mu^- K^+\pi^-$  where the pion is misidentified as a kaon
- Peaking background from  $\Lambda_b \to J/\psi$  Kp estimated to be negligible

Alberto Bragagnolo

Measurement of  $\phi_{
m s}$  in the B $_{
m s} 
ightarrow {
m J}/\psi \, \phi$  channel at 13 TeV by CMS

### Fit 1D projections



## Systematic uncertainties

|                               | A <sub>0</sub>   <sup>2</sup> | A_⊥   <sup>2</sup> | A <sub>S</sub>   <sup>2</sup> | $\delta_{\parallel}$ | $\delta_{\perp}$ | $\delta_{S\perp}$ | Γs                  | ΔΓs                 | Δms                   | $ \lambda $ | $\phi_{s}$ |
|-------------------------------|-------------------------------|--------------------|-------------------------------|----------------------|------------------|-------------------|---------------------|---------------------|-----------------------|-------------|------------|
|                               |                               |                    |                               | [rad]                | [rad]            | [rad]             | [ps <sup>-1</sup> ] | [ps <sup>-1</sup> ] | [ħ ps <sup>-1</sup> ] |             | [mrad]     |
| Model bias                    | 0.0002                        | 0.0012             | 0.0008                        | 0.020                | 0.016            | 0.006             | 0.0005              | 0.0019              | -                     | 0.0035      | 7.9        |
| Angular efficiency            | 0.0008                        | 0.0010             | 0.0015                        | 0.006                | 0.015            | 0.015             | 0.0002              | 0.0006              | 0.007                 | 0.0057      | 3.8        |
| Lifetime efficiency           | 0.0014                        | 0.0023             | 0.0007                        | 0.001                | 0.002            | 0.002             | 0.0022              | 0.0062              | 0.001                 | 0.0002      | 0.3        |
| Lifetime resolution           | 0.0007                        | 0.0009             | 0.0065                        | 0.006                | 0.025            | 0.022             | 0.0005              | 0.0008              | 0.015                 | 0.0009      | 2.5        |
| Data-MC mismatch              | 0.0044                        | 0.0029             | 0.0065                        | 0.007                | 0.007            | 0.028             | 0.0003              | 0.0008              | 0.004                 | 0.0003      | 0.6        |
| Flavour tagging               | 0.0003                        | $< 10^{-4}$        | $< 10^{-4}$                   | 0.001                | 0.003            | 0.001             | $< 10^{-4}$         | $< 10^{-4}$         | 0.001                 | 0.0002      | 0.1        |
| Unfitted $\omega_{evt}$ dist. | -                             | 0.0008             | -                             | -                    | _                | 0.006             | 0.0005              | -                   | _                     | -           | 3.0        |
| Model assumptions             | -                             | 0.0013             | 0.0012                        | 0.017                | 0.019            | 0.011             | 0.0003              | _                   | _                     | 0.0046      | -          |
| Peaking background            | 0.0005                        | 0.0002             | 0.0025                        | 0.005                | 0.007            | 0.011             | 0.0002              | 0.0008              | 0.011                 | $< 10^{-4}$ | 0.3        |
| Total syst.                   | 0.0048                        | 0.0044             | 0.0097                        | 0.028                | 0.040            | 0.043             | 0.0024              | 0.0066              | 0.020                 | 0.0082      | 9.6        |

#### Leading systematic uncertainties for the most interesting parameters

- $\cdot \phi_{
  m s} 
  ightarrow$  model bias and angular efficiency
- ·  $\Delta\Gamma_s \rightarrow$  lifetime efficiency
- $\cdot \ \Gamma_s \to \text{lifetime efficiency}$
- +  $\Delta m_s \rightarrow$  lifetime resolution and peaking background model
- $\cdot \; |\lambda| 
  ightarrow$  angular efficiency and model assumptions

Measurement of  $\phi_s$  in the  $B_s \rightarrow J/\psi \phi$  channel at 13 TeV by CMS

| Parameter                                                                                                                                                                | Value  | Stat.                                          | Syst.                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------|---------------------------------------|
| $\begin{array}{c c} \phi_{s} [mrad] & -11 \\ \Delta \Gamma_{s} [ps^{-1}] & 0.114 \\ \Gamma_{s} [ps^{-1}] & 0.6531 \\ \Delta m_{s} [\hbar \ ps^{-1}] & 17.51 \end{array}$ |        | ± 50<br>±0.014<br>± 0.0042<br>+ 0.10<br>− 0.09 | ± 10<br>± 0.007<br>± 0.0024<br>± 0.02 |
| $ \lambda $                                                                                                                                                              | 0.972  | $\pm$ 0.026                                    | $\pm$ 0.008                           |
| $ A_0 ^2$                                                                                                                                                                | 0.5350 | $\pm$ 0.0047                                   | $\pm 0.0048$                          |
| $ A_{\perp} ^2$                                                                                                                                                          | 0.2337 | $\pm0.0063$                                    | $\pm 0.0044$                          |
| $ A_S ^2$                                                                                                                                                                | 0.022  | +0.008<br>-0.007                               | $\pm0.010$                            |
| $\delta_{\parallel}$ [rad]                                                                                                                                               | 3.18   | $\pm 0.12$                                     | $\pm 0.03$                            |
| $\delta_{\perp}$ [rad]                                                                                                                                                   | 2.77   | $\pm 0.16$                                     | $\pm 0.04$                            |
| $\delta_{S\perp}$ [rad]                                                                                                                                                  | 0.221  | + 0.083<br>- 0.070                             | $\pm 0.043$                           |

•  $\phi_s$  and  $\Delta \Gamma_s$  are in agreement with the SM:

$$\begin{split} \phi^{\rm SM}_{\rm s} &= -36.96^{+0.84}_{-0.72}\,{\rm mrad}\\ \Delta\Gamma^{\rm SM}_{\rm s} &= 0.087\pm0.021\,{\rm ps^{-1}} \end{split}$$

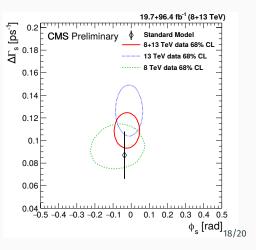
 $\cdot ~ \Gamma_s$  is consistent with the world average:

$$\Gamma_s^{WA} = 0.6623 \pm 0.0018 \text{ ps}^{-1}$$

Δm<sub>s</sub> is consistent with the world average:

$$\Delta m_s^{WA} = 17.757 \pm 0.021 \, h \text{ps}^{-1}$$

- $\cdot \;\; |\lambda|$  is consistent with no direct CPV (  $\lambda=$  1)
- This is the first measurement by CMS of  $\Delta m_s$  and  $|\lambda|$


#### Alberto Bragagnolo

#### **Combination with 8 TeV results**

- The results of this analysis are in agreement with the ones obtained by CMS at  $\sqrt{s} = 8$  TeV [Phys.Lett.B757(2016)97] and therefore combined
- All systematic uncertainties are considered uncorrelated
- The results are in agreement with the SM predictions

 $\phi_{
m s} = -21 \pm 45 \mbox{ mrad}$  $\Delta\Gamma_{
m s} = 0.1074 \pm 0.0097 \mbox{ ps}^{-1}$ 

• The new trigger strategy, which trades number of events for tagging power, **pays off** for  $\phi_s$  while **does not improve**  $\Delta\Gamma_s$ , which sensitivity is driven by statistics



## Conclusions

#### Summary

- The **CPV phase**  $\phi_s$  and the **decay width difference**  $\Delta \Gamma_s$  are measured using 48 500  $B_s^0 \rightarrow J/\psi \phi$  candidates collected at  $\sqrt{s} = 13$  TeV, corresponding to  $\mathcal{L}_{int} = 96.4$  fb<sup>-1</sup>
- Events are selected using a **non displaced trigger** that required an **additional muon**, which is exploited to infer the flavor of the B<sup>0</sup><sub>s</sub>
  - This strategy paid off in terms of tagging performance, leading to a significant reduction of the  $\phi_{\rm s}$  uncertainty
  - + However, the limited number of selected events prevented improvements on  $\Delta\Gamma_s$
- A novel opposite-side muon tagger based on Deep Neural Network has been developed to directly predict mistag probability on per-event basis, achieving  $P_{tag} \sim 10\%$
- Results from this analysis are **combined** with those obtained at  $\sqrt{s} = 8$  TeV yielding

 $\phi_{\mathrm{s}} = -21 \pm 45 \,\mathrm{mrad}$  $\Delta\Gamma_{\mathrm{s}} = 0.1074 \pm 0.0097 \,\mathrm{ps}^{-1}$ 

Results are consistent with the Standard Model predictions

$$\phi_{s}^{SM} = -36.96^{+0.84}_{-0.72} \, mrad \qquad \Delta\Gamma_{s}^{SM} = 0.087 \pm 0.021 \, ps^{-1}$$

Alberto Bragagnolo

Measurement of  $\phi_s$  in the  $B_s \rightarrow J/\psi \phi$  channel at 13 TeV by CMS

## Outlook

#### Comparison with other LHC experiments in the $\rm B^0_s \rightarrow J/\psi~\rm K^+K^-$ channel

|       | $\phi_{\sf s}$ [mrad]           | $\Delta\Gamma_{s}$ [ps <sup>-1</sup> ] | Reference               |
|-------|---------------------------------|----------------------------------------|-------------------------|
| CMS   | $-21\pm45$                      | $0.1074 \pm 0.0097$                    | CMS-PAS-BPH-20-001      |
| ATLAS | $-87\pm42$                      | $0.0640 \pm 0.0048$                    | CERN-EP-2019-218        |
| LHCb  | $-81\pm32$                      | $0.0777 \pm 0.0062$                    | EUR.PHYS.J.C79(2019)706 |
| SM    | $-36.96\substack{+0.84\\-0.72}$ | $0.087\pm0.021$                        | CKMfitter, 1102.4274    |

· All of the above are combination of Run-1 and partial Run-2 results

 $\cdot$  Uncertanties are presented as the stat.+syst. squared sum

 $\cdot$  LHCb results refer to the combination of measurements around the  $\phi$ (1020) resonance

 $\cdot$  New  $\Delta\Gamma_s$  prediction with smaller uncertainties available:  $\Delta\Gamma_s^{SM} = 0.091 \pm 0.013 \text{ ps}^{-1}$  [1912.07621]

- ΔΓ<sub>s</sub> shows tensions between experiments
- Full Run-2 measurements will clarify the situation

#### Future plans

- CMS plans to analyze the **full Run-2 dataset**, adding a **complementary trigger** that requires a displaced  $J/\psi$  plus two charged tracks
  - Electron and jet flavour tagging algorithms will be used
- + Effective statistics  $N(B^0_s)\cdot P_{tag}$  expected to improve by a factor  $1.5\sim 2.0$

# Thanks for your attention!

#### Decay rate model

$$\frac{d^4 \Gamma(B^0_{s}(t))}{d \Theta dt} = \sum_{i=1}^{10} \mathcal{O}_i(\alpha,t) \cdot g_i(\Theta)$$

$$\mathcal{O}_{i} = N_{i}e^{-\Gamma_{S}t}\left[a_{i}\cosh\left(\frac{1}{2}\Delta\Gamma_{S}t\right) + b_{i}\sinh\left(\frac{1}{2}\Delta\Gamma_{S}t\right) + c_{i}\xi(1-2\omega)\cos\left(\Delta m_{s}t\right) + d_{i}\xi(1-2\omega)\sin\left(\Delta m_{s}t\right)\right]$$

| i  | $g_i(\theta_T, \psi_T, \varphi_T)$                                                     | N                                | a <sub>i</sub>                                | b <sub>i</sub>                                        | c <sub>i</sub>                             | d <sub>i</sub>                                     |
|----|----------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------|-------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| 1  | $2 \cos^2 \psi_T (1 - \sin^2 \theta_T \cos^2 \varphi_T)$                               | A <sub>0</sub>   <sup>2</sup>    | 1                                             | D                                                     | С                                          | —S                                                 |
| 2  | $\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \varphi_T)$                                 | A <sub>  </sub>   <sup>2</sup>   | 1                                             | D                                                     | С                                          | —S                                                 |
| 3  | $\sin^2 \psi_T \sin^2 \theta_T$                                                        | A⊥  <sup>2</sup>                 | 1                                             | — D                                                   | С                                          | S                                                  |
| 4  | $-\sin^2 \psi_T \sin 2\theta_T \sin \varphi_T$                                         | A <sub>  </sub>   A <sub>_</sub> | $C \sin(\delta_{\perp} - \delta_{\parallel})$ | $\frac{S}{\cos(\delta_{\perp} - \delta_{\parallel})}$ | $sin(\delta_{\perp} - \delta_{\parallel})$ | $D \cos(\delta_{\perp} - \delta_{\parallel})$      |
| 5  | $\frac{1}{\sqrt{2}} \sin 2\psi_{T} \sin^{2} \theta_{T} \sin 2\varphi_{T}$              | A <sub>0</sub>   A <sub>  </sub> | $\cos(\delta_{\parallel} - \delta_{0})$       | $D\cos(\delta_{\parallel} - \delta_{0})$              | $C \cos(\delta_{\parallel} - \delta_0)$    | $-\frac{S}{\cos(\delta_{\parallel} - \delta_{0})}$ |
| 6  | $\frac{1}{\sqrt{2}}$ sin 2 $\psi_{\rm T}$ sin 2 $\theta_{\rm T}$ cos $\varphi_{\rm T}$ | A <sub>0</sub>   A⊥              | $C \sin(\delta_{\perp} - \delta_0)$           | $\frac{S}{\cos(\delta_{\perp} - \delta_0)}$           | $sin(\delta_{\perp} - \delta_0)$           | $D \cos(\delta_{\perp} - \delta_0)$                |
| 7  | $\frac{2}{3}(1 - \sin^2 \theta_T \cos^2 \varphi_T)$                                    | A <sub>S</sub>   <sup>2</sup>    | 1                                             | — D                                                   | C                                          | S                                                  |
| 8  | $\frac{1}{3}\sqrt{6}\sin\psi_{T}\sin^{2}\theta_{T}\sin^{2}\varphi_{T}$                 | A <sub>S</sub>   A <sub>  </sub> | $C \cos(\delta_{\parallel} - \delta_{S})$     | $\frac{S}{S}\sin(\delta_{\parallel} - \delta_{S})$    | $\cos(\delta_{\parallel} - \delta_{S})$    | $D \sin(\delta_{\parallel} - \delta_{S})$          |
| 9  | $\frac{1}{3}\sqrt{6} \sin \psi_T \sin 2\theta_T \cos \varphi_T$                        | A <sub>S</sub>   A⊥              | $sin(\delta_{\perp} - \delta_{S})$            | $-D \sin(\delta_{\perp} - \delta_{S})$                | $C \sin(\delta_{\perp} - \delta_S)$        | $\frac{S}{sin}(\delta_{\perp} - \delta_{S})$       |
| 10 | $\frac{4}{3}\sqrt{3}\cos\psi_{T}(1-\sin^2\theta_{T}\cos^2\varphi_{T})$                 | $ A_S  A_0 $                     | $C \cos(\delta_0 - \delta_S)$                 | $\frac{S}{sin}(\delta_0 - \delta_S)$                  | $\cos(\delta_0 - \delta_S)$                | $D\sin(\delta_0 - \delta_S)$                       |

 $C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \rightarrow \text{Sensitive to direct CPV}$ 

$$\begin{split} \mathsf{S} &= -\frac{2|\lambda|\sin\phi_{\mathsf{s}}}{1+|\lambda|^2} \to \mathsf{Sensitive to small}\,\phi_{\mathsf{s}}\\ \mathsf{D} &= -\frac{2|\lambda|\cos\phi_{\mathsf{s}}}{1+|\lambda|^2} \end{split}$$

Computed separately for 2017 and 2018 using the "projection" method

#### 1. Construct efficiency histograms

- Numerator: 3D angular RECO histograms from  $\Delta\Gamma_s = 0$  MC samples
- Denominator: 3D angular GEN histograms from GEN only sample
- Binning: 70 bins for  $\cos \theta_{\rm T}$  and  $\cos \psi_{\rm T}$ , and 30 for  $\phi_{\rm T}$

#### 2. Project on Legendre orthogonal basis

$$b_{l,k,m}(\Theta) = P_l^m(\cos \theta_T) \cdot P_k^m(\cos \psi_T) \cdot \begin{cases} \sin(m \phi_T) & \text{if } m < 0\\ \cos(m \phi_T) & \text{if } m > 0\\ 1/2 & \text{if } m = 0 \end{cases}$$

- up to order 6
- 3. Construct angular efficiency as

$$\epsilon(\Theta) = \sum_{l,k,m} c_{l,k,m} \cdot b_{l,k,m}(\Theta)$$

c<sub>l,k,m</sub> are the projection coefficients

## Deep neural network for flavour tagging

#### • Training features

- Muon variables:  $p_T$ ,  $\eta$ ,  $d_{xy}$ ,  $\sigma(d_{xy})$ ,  $d_z$ ,  $\sigma(d_z)$ ,  $\Delta R(\mu, B_s^0)$ , DNN vs hadron fakes score
- Cone variables:  $Iso_{\mu}$ ,  $Q_{cone}$ ,  $p_{T,rel}$ ,  $p_{T,cone}$ ,  $\Delta R(\mu, cone)$ ,  $E_{\mu}/E_{cone}$

#### Architecture: fully connected

- 3 layers of 200 neurons
- ReLU activation
- 40% dropout probability
- Loss: categorical crossentropy
- Optimizer: Adam