Measurement of the CP-violating phase ϕ_s in the $B_s^0 \rightarrow J/\psi \phi$ channel at 13 TeV by CMS

Alberto Bragagnoloa, on behalf of the CMS Collaboration
LHCP 2020 – 29/05/2020

aUniversity & INFN Padova (IT)
Introduction
Motivations

- ϕ_s is a CPV phase arising from the interference between B_s^0 decays proceeding directly and through B_s^0-\bar{B}_s^0 mixing to a CP final state.

- **SM prediction:** $\phi_s \simeq -2\beta_s = -36.96^{+0.84}_{-0.72}$ mrad

 [CKMfitter]

- New Physics can **change** the value of ϕ_s up to $\sim 10\%$ via new particles contributing to the B_s^0-\bar{B}_s^0 mixing

 [JHEP04(2010)031]

- $B_s^0 \rightarrow J/\psi \phi$ is the **golden channel** to measure ϕ_s

 - No direct CPV
 - Only one CPV phase
 - Easy to reconstruct with high S/B

- **Several other interesting observables** measurable with the same analysis: Γ_s, $\Delta\Gamma_s$, $|\lambda|$, Δm_s^2

 - $\lambda = \frac{q}{p} \tilde{A}_{f,s.}$, $|B_{L,H}\rangle = p|B_s^0\rangle \pm q|\bar{B}_s^0\rangle$
Measurement ingredients

\[a_{CP}(t) \propto \eta_{\mu\mu K K} \sin(\phi_s) \sin(\Delta m_s t) \]

\[\text{sensitivity} = f \left(\sqrt{\frac{P_{tag} S}{2}} \sqrt{\frac{S}{S + B}} \cdot e^{-\frac{\sigma t^2}{2} \Delta m_s^2} \right) \]

1. **Angular analysis** to separate the different CP eigenstate of the final state
 - \(\psi_T \): helicity angle of \(K^+ \) in the \(\phi \) rest frame
 - \(\theta_T \): polar angle of \(\mu^+ \) in the \(J/\psi \) rest frame
 - \(\phi_T \): azimuthal angle of \(\mu^+ \) in the \(J/\psi \) rest frame

2. **Excellent time resolution** to see the fast \(B_s^0 - \bar{B}_s^0 \) oscillation

3. **Highly efficient flavour tagging** to infer the initial \(B_s^0 \) flavour

4. **As much statistics as possible** (with good S/N)
Candidate selection
Trigger strategy

Trigger: $J/\psi \rightarrow \mu^+ \mu^-$ candidate **plus an additional muon**

- The additional muon is used to **tag** the flavour of the B^0_s, via $b \rightarrow \mu^- X$ decays of the other b
- However, the requirement for a third muon **lowers** the rate of selected events
- **Not to apply a displacement cut** on the $J/\psi \rightarrow \mu^+ \mu^-$ at HLT level

This trigger improves the tagging efficiency at the cost of the **reduced** number of signal events
Schematic representation of an event

Alberto Bragagnolo

Measurement of ϕ_s in the $B_s \rightarrow J/\psi \phi$ channel at 13 TeV by CMS
Offline selection

Offline selection

- \(p_T(\mu) \geq 3.5 \) GeV
- \(|\eta(\mu)| \leq 2.4 \)
- \(p_T(K) \geq 1.2 \) GeV
- \(|\eta(K)| \leq 2.5 \)
- \(|m(\mu^+\mu^-) - m_{J/\psi}^{\text{PDG}}| < 150 \) MeV
- \(|m(K^+K^-) - m_{\phi(1020)}^{\text{PDG}}| < 10 \) MeV

- \(p_T(B^0_s) \geq 11 \) GeV
- \(cT(B^0_s) \geq 70 \) \(\mu \)m
- \(B^0_s \to J/\psi \phi \text{ Vtx prob} \geq 0.1\% \)
- \(m(\mu^+\mu^-K^+K^-) \) \([5.24, 5.49]\) GeV

- Vertex fit performed with \(J/\psi \) mass constraint
- Cuts to enhance purity \(S/(S+B) \)

- \(\mathcal{L}_{\text{int}} = 96.4 \) fb\(^{-1} \) collected in 2017 and 2018

- Number of signal \(B^0_s = 48\,500 \)

- Number of candidates in Run-1: \(49\,200 \)

Figure: fit to data 1D projection
Example of a candidate event

CMS Experiment at the LHC, CERN
Data recorded: 2018-Jun-11 17:23:01.070912 GMT
Run / Event / LS: 317683 / 314645082 / 248

μ^+ from J/ψ

μ^- from J/ψ

Tag μ
Efficiencies
Proper decay length efficiency

- The efficiency in selecting and reconstructing a B_s^0 decay depends on the decay length.

- To properly fit the decay rate model, we need a parametrization of the decay length efficiency.

- Efficiency is evaluated with simulated samples, separately for 2017 and 2018, and fitted in the ct range $0.007-0.5 \text{ cm}$.

$$
\epsilon(ct) = e^{-a \cdot ct} \cdot \text{Chebychev4}(ct)
$$

- The procedure is validated by fitting the B^\pm lifetime in the $B^\pm \rightarrow J/\psi K^\pm$ control channel, in eight different data taking periods, each roughly equivalent in statistics to the B_s^0 sample.

<table>
<thead>
<tr>
<th>Data set</th>
<th>$c\tau_{B^+} [\mu\text{m}]$</th>
<th>Pull w.r.t PDG [s.d.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018A</td>
<td>489.3 ± 2.0</td>
<td>-0.4</td>
</tr>
<tr>
<td>2018B</td>
<td>495.7 ± 2.7</td>
<td>$+1.5$</td>
</tr>
<tr>
<td>2018C</td>
<td>489.2 ± 1.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>2018D</td>
<td>493.2 ± 1.3</td>
<td>$+1.2$</td>
</tr>
<tr>
<td>2018</td>
<td>492.78 ± 0.97</td>
<td>$+1.1$</td>
</tr>
<tr>
<td>2017A</td>
<td>493.8 ± 2.4</td>
<td>$+1.0$</td>
</tr>
<tr>
<td>2017B</td>
<td>494.8 ± 3.5</td>
<td>$+1.0$</td>
</tr>
<tr>
<td>2017C</td>
<td>494.7 ± 2.3</td>
<td>$+1.4$</td>
</tr>
<tr>
<td>2017D</td>
<td>489.5 ± 1.7</td>
<td>-0.8</td>
</tr>
<tr>
<td>2017</td>
<td>492.9 ± 1.1</td>
<td>$+0.5$</td>
</tr>
</tbody>
</table>
Angular efficiency

• Detector acceptance and event selection lead to non uniform angular efficiency
• 3D angular efficiency is evaluated in bins of $\cos \theta_T$, $\cos \psi_T$ and ϕ_T, separately for 2017 and 2018, using simulated samples
 • **Binning**: 70 bins for $\cos \theta_T$ and $\cos \psi_T$, and 30 for ϕ_T
• The efficiency function is parameterized with spherical harmonics and Legendre polynomials up to order six
Flavour tagging
Tagging overview

- **Tagger:** opposite-side (OS) muon
 - Tagging feature: muon charge
 - The muon is selected already at trigger level → **very high efficiency**
- **Optimized** in $B^0_s \rightarrow J/\psi \phi$ simulated events and **calibrated** in data using $B^\pm \rightarrow J/\psi K^\pm$ self-tagging decays
- The **figure of merit** is the tagging power $P_{\text{tag}} = \epsilon_{\text{tag}} D_{\text{tag}}^2 = \epsilon_{\text{tag}} (1 - 2 \omega_{\text{tag}})^2$
 - $\epsilon_{\text{tag}} = N_{\text{tag}}/N_{\text{tot}}$, **tagging efficiency** ($N_{\text{tag}} = N_{\text{corr.tag}} + N_{\text{mistag}}$)
 - $\omega_{\text{tag}} = N_{\text{mistag}}/N_{\text{tag}}$, **mistag fraction**
- **Mistag probability is evaluated on per-event basis** with a dedicated Deep Neural Network
OS-muon selection

<table>
<thead>
<tr>
<th>Reconstruction</th>
<th>Global muon<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T</td>
<td>≥ 2.0 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>IP_z w.r.t. PV</td>
<td>≤ 1.0 cm</td>
</tr>
<tr>
<td>$\Delta R_{\eta,\phi}$ wrt B_S^0</td>
<td>≥ 0.4</td>
</tr>
<tr>
<td>DNN vs fakes from hadrons</td>
<td>Loose WP<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Global muon = reconstructed with information from both tracker and muon system

^b ϵ(muons) = 98%, ϵ(hadrons) = 33% evaluated on Global muon candidates

- Reconstructed b meson tracks **excluded**

- **Dedicated discriminator for soft muons**, trained with muons from simulated samples
 - Signal: genuine muon from b hadron
 - Background: fake muons (mostly K^{\pm}, π^{\pm})

- The muon selection is overall **loose** for maximum efficiency

- **Performance using the muon charge as tagging feature** (without per-event mistag)
 - $\epsilon_{\text{tag}} \sim 50$
 - $\omega_{\text{tag}} \sim 30$
 - $P_{\text{tag}} \sim 7$

Alberto Bragagnolo Measurement of ϕ_s in the $B_s \rightarrow J/\psi \phi$ channel at 13 TeV by CMS 10/20
Per-event mistag probability

- Per-event mistag probability enhances the total tagging performance.
- A fully connected **Deep Neural Network** is used to distinguish mistagged events and evaluate per-event mistag probability **at the same time**.
 - **Input features:** muon variables ($p_T, d_{xy}, \sigma_{d_{xy}}, \Delta R, ...$) and “cone” variables ($\text{Iso}_\mu, Q_{\text{cone}}, p_{T,\text{rel}}, \text{energy ratio, ...}$).
- The DNN is constructed in such a way that the **output score** f_{dnn} is equal to the probability of tagging the event correctly.

\[f_{\text{dnn}} = 1 - \omega_{\text{evt}} \]

Figure: schematic representation of a fully connected DNN.
Per-event mistag calibration

- ω_{evt} is calibrated in data with self-tagging $B^{\pm} \rightarrow J/\psi K^{\pm}$ decays with a linear function

$$w_{\text{fit}} = a + b \cdot w_{\text{evt}}$$

2017 tagging calibration

- CMS Preliminary 2017
- 36.7 fb^{-1} (13 TeV)
- $a = -0.001 \pm 0.004$
- $b = 1.01 \pm 0.01$

2018 tagging calibration

- CMS Preliminary 2018
- 59.7 fb^{-1} (13 TeV)
- $a = 0.003 \pm 0.003$
- $b = 1.01 \pm 0.01$

- Excellent agreement between prediction and measurement
- DNN and calibration are stable \rightarrow very small systematic uncertainties
Tagging performance

- Tagging performances evaluated in $B^{\pm} \rightarrow J/\psi K^{\pm}$ data

<table>
<thead>
<tr>
<th>Data set</th>
<th>ϵ_{tag}</th>
<th>ω_{tag}</th>
<th>P_{tag}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>$(45.7 \pm 0.1)%$</td>
<td>$(27.1 \pm 0.1)%$</td>
<td>$(9.6 \pm 0.1)%$</td>
</tr>
<tr>
<td>2018</td>
<td>$(50.9 \pm 0.1)%$</td>
<td>$(27.3 \pm 0.1)%$</td>
<td>$(10.5 \pm 0.1)%$</td>
</tr>
<tr>
<td>Run-1</td>
<td>$(8.31 \pm 0.03)%$</td>
<td>$(30.2 \pm 0.3)%$</td>
<td>$(1.31 \pm 0.03)%$</td>
</tr>
</tbody>
</table>

- **High efficiency** due to the additional muon required at trigger level
- **Low dilution** thanks to the DNN based per-event mistag probability
- Final performance, normalized by the event rate, $\sim 50\%$ higher w.r.t. Run-1
Maximum likelihood fit and results
Fit model

\[P = N_{\text{sgn}} P_{\text{sgn}} + N_{\text{bkg}} P_{\text{bkg}} + N_{\text{peak}} P_{\text{peak}} \]

\[P_{\text{sgn}} = \epsilon(\text{ct}) \epsilon(\Theta) [f(\Theta, \text{ct}, \alpha) \otimes G(\text{ct}, \sigma_{\text{ct}})] P_{\text{sgn}}(m_{B_0^s}) P_{\text{sgn}}(\sigma_{\text{ct}}) P_{\text{sgn}}(\xi) \]

- \(\epsilon(\text{ct}) \epsilon(\Theta) \): efficiency functions
- \(f(\Theta, \text{ct}, \alpha) \): differential decay rate PDF
- \(G(\text{ct}, \sigma_{\text{ct}}) \): Gaussian resolution function
- \(P(m_{B_0^s}) \): mass PDFs
- \(P(\sigma_{\text{ct}}) \): decay length uncertainty PDFs
- \(P(\xi) \): tag distribution

\[P_{\text{bkg}} = P_{\text{bkg}}(\cos \theta_T, \phi_T) P_{\text{bkg}}(\cos \psi_T) P_{\text{bkg}}(\text{ct}) P_{\text{bkg}}(m_{B_0^s}) P_{\text{bkg}}(\sigma_{\text{ct}}) P_{\text{bkg}}(\xi) \]

- \(P_{\text{bkg}}(\cos \theta_T, \phi_T), P_{\text{bkg}}(\cos \psi_T), P_{\text{bkg}}(\text{ct}) \): background angular and lifetime PDFs

\[P_{\text{peak}} = P_{\text{peak}}(\cos \theta_T, \phi_T) P_{\text{peak}}(\cos \psi_T) P_{\text{peak}}(\text{ct}) P_{\text{peak}}(m_{B_0^s}) P_{\text{peak}}(\sigma_{\text{ct}}) P_{\text{peak}}(\xi) \]

- \(P_{\text{peak}} \) models the **peaking background** from \(B^0 \rightarrow J/\psi K^0 \rightarrow \mu^+ \mu^- K^+ \pi^- \) where the pion is misidentified as a kaon
- Peaking background from \(\Lambda_b \rightarrow J/\psi Kp \) estimated to be negligible
Systematic uncertainties

| Source | $|A_0|^2$ | $|A_\perp|^2$ | $|A_S|^2$ | $\delta_{||}$ [rad] | δ_{\perp} [rad] | $\delta_{S\perp}$ [rad] | Γ_S [ps$^{-1}$] | $\Delta\Gamma_S$ [ps$^{-1}$] | Δm_S [m$^{-1}$] | $|\lambda|$ | ϕ_S |
|-------------------------------------|---------|---------------|---------|---------------------|---------------------|---------------------|-----------------|---------------------|---------------------|----------|----------|
| Model bias | 0.0002 | 0.0012 | 0.0008 | 0.020 | 0.016 | 0.006 | 0.0005 | 0.0019 | - | 0.0035 | 7.9 |
| Angular efficiency | 0.0008 | 0.0010 | 0.0015 | 0.006 | 0.015 | 0.015 | 0.0002 | 0.0006 | 0.007 | 0.0057 | 3.8 |
| Lifetime efficiency | 0.0014 | 0.0023 | 0.0007 | 0.001 | 0.002 | 0.002 | 0.0062 | 0.001 | 0.0002 | 0.0002 | 0.3 |
| Lifetime resolution | 0.0007 | 0.0009 | 0.0065 | 0.006 | 0.025 | 0.022 | 0.0005 | 0.0008 | 0.004 | 0.0003 | 0.6 |
| Data-MC mismatch | 0.0044 | 0.0029 | 0.0065 | 0.007 | 0.007 | 0.028 | 0.0003 | 0.0008 | 0.004 | 0.0003 | 0.6 |
| Flavour tagging | 0.0003 | $<10^{-4}$ | $<10^{-4}$ | 0.001 | 0.003 | 0.001 | $<10^{-4}$ | $<10^{-4}$ | 0.001 | 0.0002 | 0.1 |
| Unfitted $\omega_{\text{evt dist.}}$ | - | 0.0008 | - | - | - | - | 0.006 | 0.0005 | - | - | 3.0 |
| Model assumptions | - | 0.0013 | 0.0012 | 0.017 | 0.019 | 0.011 | 0.0003 | - | - | - | 0.0046 |
| Peaking background | 0.0005 | 0.0002 | 0.0025 | 0.005 | 0.007 | 0.011 | 0.0002 | 0.0008 | 0.011 | $<10^{-4}$ | 0.3 |
| Total syst. | 0.0048 | 0.0044 | 0.0097 | 0.028 | 0.040 | 0.043 | 0.0024 | 0.0066 | 0.020 | 0.0082 | 9.6 |

Leading systematic uncertainties for the most interesting parameters

- $\phi_S \rightarrow$ model bias and angular efficiency
- $\Delta \Gamma_S \rightarrow$ lifetime efficiency
- $\Gamma_S \rightarrow$ lifetime efficiency
- $\Delta m_S \rightarrow$ lifetime resolution and peaking background model
- $|\lambda| \rightarrow$ angular efficiency and model assumptions
Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_s [mrad]</td>
<td>-11 ± 50</td>
<td>± 10</td>
<td></td>
</tr>
<tr>
<td>$\Delta \Gamma_s$ [ps$^{-1}$]</td>
<td>0.114 ± 0.014</td>
<td>± 0.007</td>
<td></td>
</tr>
<tr>
<td>Γ_s [ps$^{-1}$]</td>
<td>0.6531 ± 0.0042</td>
<td>± 0.0024</td>
<td></td>
</tr>
<tr>
<td>Δm_s [\hbar ps$^{-1}$]</td>
<td>17.51 ± 0.10</td>
<td>± 0.02</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
<td>$</td>
<td>0.972 ± 0.026</td>
</tr>
<tr>
<td>$</td>
<td>A_0</td>
<td>^2$</td>
<td>0.5350 ± 0.0047</td>
</tr>
<tr>
<td>$</td>
<td>A_\perp</td>
<td>^2$</td>
<td>0.2337 ± 0.0063</td>
</tr>
<tr>
<td>$</td>
<td>A_S</td>
<td>^2$</td>
<td>0.022 ± 0.008</td>
</tr>
<tr>
<td>δ_{\parallel} [rad]</td>
<td>3.18 ± 0.12</td>
<td>± 0.03</td>
<td></td>
</tr>
<tr>
<td>δ_{\perp} [rad]</td>
<td>2.77 ± 0.16</td>
<td>± 0.04</td>
<td></td>
</tr>
<tr>
<td>$\delta_{S\perp}$ [rad]</td>
<td>0.221 ± 0.083</td>
<td>± 0.070</td>
<td></td>
</tr>
</tbody>
</table>

- ϕ_s and $\Delta \Gamma_s$ are in agreement with the SM:

 $\phi_s^{SM} = -36.96^{+0.84}_{-0.72}$ mrad

 $\Delta \Gamma_s^{SM} = 0.087 \pm 0.021$ ps$^{-1}$

- Γ_s is consistent with the world average:

 $\Gamma_s^{WA} = 0.6623 \pm 0.0018$ ps$^{-1}$

- Δm_s is consistent with the world average:

 $\Delta m_s^{WA} = 17.757 \pm 0.021 \hbar$ ps$^{-1}$

- $|\lambda|$ is consistent with no direct CPV ($\lambda = 1$)

- This is the first measurement by CMS of Δm_s and $|\lambda|$
Combination with 8 TeV results

• The results of this analysis are in agreement with the ones obtained by CMS at $\sqrt{s} = 8$ TeV [Phys.Lett.B757(2016)97] and therefore combined

• All systematic uncertainties are considered uncorrelated

• The results are in agreement with the SM predictions

$\phi_s = -21 \pm 45 \text{ mrad}$

$\Delta \Gamma_s = 0.1074 \pm 0.0097 \text{ ps}^{-1}$

• The new trigger strategy, which trades number of events for tagging power, pays off for ϕ_s while does not improve $\Delta \Gamma_s$, which sensitivity is driven by statistics
Conclusions
Summary

• The CPV phase ϕ_s and the decay width difference $\Delta \Gamma_s$ are measured using 48,500 $B^0_s \to J/\psi \phi$ candidates collected at $\sqrt{s} = 13$ TeV, corresponding to $L_{\text{int}} = 96.4$ fb$^{-1}$.

• Events are selected using a non displaced trigger that required an additional muon, which is exploited to infer the flavor of the B^0_s.
 • This strategy paid off in terms of tagging performance, leading to a significant reduction of the ϕ_s uncertainty.
 • However, the limited number of selected events prevented improvements on $\Delta \Gamma_s$.

• A novel opposite-side muon tagger based on Deep Neural Network has been developed to directly predict mistag probability on per-event basis, achieving $P_{\text{tag}} \sim 10\%$.

• Results from this analysis are combined with those obtained at $\sqrt{s} = 8$ TeV yielding

$$\phi_s = -21 \pm 45 \text{ mrad}$$
$$\Delta \Gamma_s = 0.1074 \pm 0.0097 \text{ ps}^{-1}$$

• Results are consistent with the Standard Model predictions

$$\phi_{s}^{\text{SM}} = -36.96^{+0.84}_{-0.72} \text{ mrad} \quad \Delta \Gamma_{s}^{\text{SM}} = 0.087 \pm 0.021 \text{ ps}^{-1}$$
Outlook

Comparison with other LHC experiments in the $B_s^0 \rightarrow J/\psi K^+K^-$ channel

<table>
<thead>
<tr>
<th></th>
<th>ϕ_s [mrad]</th>
<th>$\Delta \Gamma_s$ [ps$^{-1}$]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>-21 ± 45</td>
<td>0.1074 ± 0.0097</td>
<td>CMS-PAS-BPH-20-001</td>
</tr>
<tr>
<td>ATLAS</td>
<td>-87 ± 42</td>
<td>0.0640 ± 0.0048</td>
<td>CERN-EP-2019-218</td>
</tr>
<tr>
<td>LHCb</td>
<td>-81 ± 32</td>
<td>0.0777 ± 0.0062</td>
<td>EUR.PHYS.J.C79(2019)706</td>
</tr>
<tr>
<td>SM</td>
<td>$-36.96^{+0.84}_{-0.72}$</td>
<td>0.087 ± 0.021</td>
<td>CKMfitter, 1102.4274</td>
</tr>
</tbody>
</table>

- All of the above are combination of Run-1 and partial Run-2 results
- Uncertainties are presented as the stat.+syst. squared sum
- LHCb results refer to the combination of measurements around the $\phi(1020)$ resonance
- New $\Delta \Gamma_s$ prediction with smaller uncertainties available: $\Delta \Gamma_s^{SM} = 0.091 \pm 0.013$ ps$^{-1}$ [1912.07621]

- $\Delta \Gamma_s$ shows tensions between experiments
- Full Run-2 measurements will clarify the situation

Future plans

- CMS plans to analyze the full Run-2 dataset, adding a complementary trigger that requires a displaced J/ψ plus two charged tracks
 - Electron and jet flavour tagging algorithms will be used
- Effective statistics $N(B_s^0) \cdot P_{\text{tag}}$ expected to improve by a factor $1.5 \sim 2.0$
Thanks for your attention!
Decay rate model

\[
\frac{d^4 \Gamma(B^0_s(t))}{d\Theta dt} = \sum_{i=1}^{10} O_i(\alpha, t) \cdot g_i(\Theta)
\]

\[
O_i = N_i e^{-r_s t} \left[a_i \cosh \left(\frac{1}{2} \Delta \Gamma_s t \right) + b_i \sinh \left(\frac{1}{2} \Delta \Gamma_s t \right) + c_i \xi (1 - 2\omega) \cos (\Delta m_s t) + d_i \xi (1 - 2\omega) \sin (\Delta m_s t) \right]
\]

\[
\begin{array}{c|c|c|c|c|c|c|c|}
 i & g_i(\theta_T, \psi_T, \varphi_T) & N_i & a_i & b_i & c_i & d_i \\
 \hline
 1 & 2 \cos^2 \psi_T (1 - \sin^2 \theta_T \cos^2 \varphi_T) & |A_0|^2 & 1 & D & C & -S \\
 2 & \sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \varphi_T) & |A_\parallel|^2 & 1 & D & C & -S \\
 3 & \sin^2 \psi_T \sin^2 \theta_T & |A_\perp|^2 & C \sin (\delta_\parallel - \delta_\perp) & -D & C & S \\
 4 & -\sin^2 \psi_T \sin 2\theta_T \sin \varphi_T & |A_\parallel||A_\perp| & \cos (\delta_\parallel - \delta_0) & S \cos (\delta_\parallel - \delta_\perp) & \sin (\delta_\perp - \delta_\parallel) & D \cos (\delta_\parallel - \delta_0) \sin (\delta_\perp - \delta_0) & -S \cos (\delta_\parallel - \delta_0) \\
 5 & \frac{1}{\sqrt{2}} \sin 2\psi_T \sin^2 \theta_T \sin 2\varphi_T & |A_\parallel||A_\parallel| & C \sin (\delta_\parallel - \delta_0) & S \cos (\delta_\parallel - \delta_\perp) & \sin (\delta_\perp - \delta_\parallel) & D \cos (\delta_\parallel - \delta_0) \sin (\delta_\perp - \delta_0) & -S \cos (\delta_\parallel - \delta_0) \\
 6 & \frac{1}{\sqrt{2}} \sin 2\psi_T \sin 2\theta_T \cos \varphi_T & |A_0||A_\parallel| & C \sin (\delta_\parallel - \delta_0) & S \cos (\delta_\parallel - \delta_\perp) & \sin (\delta_\perp - \delta_\parallel) & D \cos (\delta_\parallel - \delta_0) \sin (\delta_\perp - \delta_0) & -S \cos (\delta_\parallel - \delta_0) \\
 7 & \frac{1}{3} \sqrt{6} \sin \psi_T \sin^2 \theta_T \sin 2\varphi_T & |A_\parallel||A_\perp| & C \cos (\delta_\parallel - \delta_S) & \sin (\delta_\perp - \delta_\parallel) & -D \sin (\delta_\parallel - \delta_S) & C \sin (\delta_\parallel - \delta_\perp) & D \sin (\delta_\parallel - \delta_S) \\
 8 & \frac{1}{3} \sqrt{6} \sin \psi_T \sin 2\theta_T \cos \varphi_T & |A_S||A_\parallel| & C \cos (\delta_\parallel - \delta_S) & \sin (\delta_\perp - \delta_\parallel) & -D \sin (\delta_\parallel - \delta_S) & C \sin (\delta_\parallel - \delta_\perp) & D \sin (\delta_\parallel - \delta_S) \\
 9 & \frac{4}{3} \sqrt{3} \cos \psi_T (1 - \sin^2 \theta_T \cos^2 \varphi_T) & |A_S||A_0| & C \cos (\delta_0 - \delta_S) & \sin (\delta_\perp - \delta_\parallel) & -D \sin (\delta_\parallel - \delta_S) & C \sin (\delta_\parallel - \delta_\perp) & D \sin (\delta_0 - \delta_S) \\
 10 & \frac{1}{3} \sqrt{3} \cos \psi_T (1 - \sin^2 \theta_T \cos^2 \varphi_T) & |A_S||A_0| & C \cos (\delta_0 - \delta_S) & \sin (\delta_\perp - \delta_\parallel) & -D \sin (\delta_\parallel - \delta_S) & C \sin (\delta_\parallel - \delta_\perp) & D \sin (\delta_0 - \delta_S) \\
 \end{array}
\]

\[
C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \rightarrow \text{Sensitive to direct CPV}
\]

\[
S = -\frac{2|\lambda| \sin \phi_s}{1 + |\lambda|^2} \rightarrow \text{Sensitive to small } \phi_s
\]

\[
D = -\frac{2|\lambda| \cos \phi_s}{1 + |\lambda|^2}
\]
Angular efficiency

Computed separately for 2017 and 2018 using the “projection” method

1. **Construct efficiency histograms**
 - Numerator: 3D angular RECO histograms from $\Delta \Gamma_s = 0$ MC samples
 - Denominator: 3D angular GEN histograms from GEN only sample
 - Binning: 70 bins for $\cos \theta_T$ and $\cos \psi_T$, and 30 for ϕ_T

2. **Project on Legendre orthogonal basis**

 \[b_{l,k,m}(\Theta) = P_l^m(\cos \theta_T) \cdot P_k^m(\cos \psi_T) \cdot \begin{cases}
 \sin(m \phi_T) & \text{if } m < 0 \\
 \cos(m \phi_T) & \text{if } m > 0 \\
 1/2 & \text{if } m = 0
\end{cases} \]

 - up to order 6

3. **Construct angular efficiency as**

 \[\epsilon(\Theta) = \sum_{l,k,m} c_{l,k,m} \cdot b_{l,k,m}(\Theta) \]

 - $c_{l,k,m}$ are the projection coefficients
Deep neural network for flavour tagging

- **Training features**
 - Muon variables: p_T, η, d_{xy}, $\sigma(d_{xy})$, d_z, $\sigma(d_z)$, $\Delta R(\mu, B^0_s)$, DNN vs hadron fakes score
 - Cone variables: Iso_{μ}, Q_{cone}, $p_{T,\text{rel}}$, $p_{T,\text{cone}}$, $\Delta R(\mu, \text{cone})$, E_μ/E_{cone}

- **Architecture: fully connected**
 - 3 layers of 200 neurons
 - ReLU activation
 - 40% dropout probability

- **Loss**: categorical crossentropy

- **Optimizer**: Adam