Off-shell effects in $t\bar{t} + \gamma/Z$ production at the LHC

Giuseppe Bevilacqua

MTA-DE Particle Physics Research Group, Debrecen

LHCP2020

May 25, 2020

In collaboration with H. B. Hartanto, M. Kraus, T. Weber and M. Worek

 Based on:
 arXiv:1803.09916 [hep-ph]
 arXiv:1809.08562 [hep-ph]

 arXiv:1907.09359 [hep-ph]
 arXiv:1912.09999 [hep-ph]

Introduction

In the absence of convincing evidence for new resonances effects, precise measurements of SM observables are key to look for effects of New Physics (NP) at the LHC

This is especially true for the top quark sector, where NP effects are expected to be more prominent due to the large mass scale

As luminosity increases, LHC allows to probe associated $t\bar{t}$ channels with more precision

We'll focus on $t\bar{t} + \gamma$ and $t\bar{t} + Z(Z \rightarrow \nu\bar{\nu})$ production at Run II of the LHC

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

G. Bevilacqua

Motivations

 $t\bar{t}\gamma$

- Direct probe of top quark electric charge $\hookrightarrow \sigma_{t\bar{t}\gamma} \sim Q_t^2$, while indirect through other processes	Melnikov <i>et al.</i> '11				
- Probe of the effective $\mathbf{t}\overline{\mathbf{t}}\gamma$ interaction	Baur et al. '05 Aguilar Saavedra '09				
 → - dimension-six SM EFT - top-quark anomalous couplings 	Schulze et al. '16 Maltoni et al. '16				
- Irreducible background to direct BSM search	nes				
$t\overline{t}Z$					
- Direct probe of ttZ coupling	Rontsch and Schulze '15				
\hookrightarrow search for deviations from SM expectations					

- Dark Matter searches at LHC ($t\bar{t} + E_T^{miss}$)
- \hookrightarrow in several models, DM couples preferentially to top quarks
- Background to searches for rare processes
- \hookrightarrow *e.g.* search of same-sign leptons + jets + E_T^{miss}

G. Bevilacqua

Arina et al. '16 Haisch et al. '16

Predictions for $t\bar{t}\gamma/Z$ at LHC: state of the art

- NLO QCD & EW: on-shell, inclusive

- $\,\,\hookrightarrow\,\,$ top quarks undecayed: general idea about size of NLO corrections
- NLO QCD: on-shell, with radiative decays
- \hookrightarrow QCD corrections to production and decays, with spin correlations and γ radiation from decays
- NLO QCD: on-shell, with PS effects
- \hookrightarrow top decays in PS, no spin correlations, only direct-photon contribution
- NLO QCD: complete off-shell

- NLO QCD: on-shell, inclusive

- NLO QCD: complete off-shell

- NLO QCD & FW + NNLL

NLO QCD: on-shell, with NLO decays

- NLO QCD & EW: on-shell, with PS effects

→ resonant and non-resonant diagrams, interferences and finite-width effects (dilepton channel)

$t\bar{t}Z$

 $t\bar{t}\gamma$

G. Bevilacqua

LHCP2020

Duan et al. '09,'11,'16 Maltoni et al. '16

Melnikov, Scharf and Schulze '11

Kardos and Trocsanyi '14

G.B, Hartanto, Kraus, Weber and Worek '18

Lazopoulos et al. '08

Röntsch and Schulze '14

Kardos et al. '12 Frixione et al. '15

Kulesza et al. '18, '20 Broggio et al. '17, '19

G.B, Hartanto, Kraus, Weber and Worek '19

Narrow Width Approximation

Based on the narrow-width limit:

$$\tfrac{1}{(p_t^2-m_t^2)^2+m_t^2\Gamma_t^2} \overset{\Gamma_t \to 0}{\sim} \tfrac{\pi}{m_t\Gamma_t} \, \delta(p_t^2-m^2) + \mathcal{O}(\tfrac{\Gamma_t}{m_t})$$

- cross section factorizes into on-shell tt̄ (+X) production ⊗ decays
 → only double-resonant diagrams are retained
- non-factorizable contributions are suppressed by powers of $\Gamma_t/m_t = O(1\%)$ for sufficiently inclusive observables
- huge simplification, but several contributions have to be put together to account for all resonant structures...

Beyond NWA

Representative Feynman diagrams for the case of $t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$:

- all resonant and non-resonant contributions are taken into account
- most complete calculation of ME's at fixed perturbative order
- computationally demanding: O(10) increase in complexity w.r.t. NWA

"Off-shell effects" = finite-width effects for tops and W's

- + SR + NR
- + interferences among DR, SR, NR

G. Bevilacqua

The HELAC-NLO framework

G. Ossola, C.G. Papadopoulos, R. Pittau '08

Predictions for $t\bar{t}\gamma$ at $\sqrt{s} = 13$ TeV

Predictions for off-shell $t\bar{t}\gamma$

 $pp \rightarrow t\bar{t}(\gamma) \rightarrow b\bar{b}e^+ \nu_e \mu^- \bar{\nu}_\mu \gamma$ @ 13 TeV -dilepton channel-

$p_{T\ell} > 30~{\rm GeV}$	$p_{Tb} > 40~{\rm GeV}$	$p_T>20~{\rm GeV}$	$p_{T,\gamma}>25{\rm GeV}$
$\Delta R_{bb} > 0.4$	$\Delta R_{\ell\ell} > 0.4$	$\Delta R_{\ell b} > 0.4$	
$ y_\ell < 2.5$	$ y_b < 2.5$	$ y_\gamma < 2.5$	

G.B., Hartanto, Kraus, Weber and Worek, arXiv:1803.09916 [hep-ph]

Dynamical scale $\mu_R = \mu_F = H_T/4$ improves perturbative stability

$$H_T = \sum_{i=\{b,\bar{b},\ell\pm,\gamma\}} p_{T_i} + \not\!\!/_T$$

Comparative analysis of different approaches of $t\bar{t}\gamma$ modeling in progress

ATLAS-CONF-2019-042

G. Bevilacqua

$t\bar{t}\gamma$: off-shell vs on-shell

Impact of off-shell effects and radiative decays

$pp \rightarrow t\bar{t}(\gamma) \rightarrow b\bar{b}e^+\nu_e\mu^-\bar{\nu}_\mu\gamma$ @ 13 TeV -dilepton channel-

G. Bevilacqua

Predictions for off-shell $t\bar{t}\gamma$

Analysis of Double-, Single- and Non-Resonant phase space regions

 $pp \rightarrow t\bar{t}(\gamma) \rightarrow b\bar{b}e^+\nu_e\mu^-\bar{\nu}_\mu\gamma$ @ 13 TeV -dilepton channel-

Kauer and Zappenfeld '01 ...

G. Bevilacqua

Predictions for $t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$ at $\sqrt{s} = 13$ TeV

$t\bar{t} + E_T^{miss}$

While leading to the same *visible* final state, off-shell $t\bar{t}$ and $t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$ have pretty different kinematics

G.B, Hartanto, Kraus, Weber and Worek, arXiv:1907.09359 [hep-ph]

 $t\bar{t}Z$ populates high p_T^{miss} regions which are important for BSM studies. However $t\bar{t}$ dominates over $t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$ by several orders of magnitude (at *inclusive* level).

 \hookrightarrow Is it important to strive for higher accuracy in $t\bar{t}Z$? Yes!

G. Bevilacqua

Determining the CP nature of spin-0 mediators in $t\bar{t}$ + DM production

Haisch, Pani and Polesello, arXiv:1611.09841 [hep-ph]

- With 300 fb⁻¹, assuming 20% systematics for SM backgrounds, it should be possible to resolve the (pseudo-)scalar nature of the mediator up to mass $\approx 200~\text{GeV}$

- Discovery reach depends on syst. uncertainty of SM backgrounds, dominated by $t\bar{t}Z$

G. Bevilacqua

Off-shell $t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$: differential cross sections

G.B, Hartanto, Kraus, Weber and Worek, arXiv:1907.09359 [hep-ph]

Summary

- Achieving the highest precision for $t\bar{t} + V$ requires to include non-resonant, finite-width and interference effects.
- Systematic comparisons between predictions at different levels of accuracy (on-shell vs off-shell) are important to assess the reliability of various approximations
- We have computed predictions for a variety of *off-shell* $t\bar{t} + X$ processes (dilepton channel) with the package HELAC-NLO:

 $\begin{array}{ll} -pp \rightarrow t\bar{t} + \gamma & -pp \rightarrow t\bar{t} + Z \\ -pp \rightarrow t\bar{t} + j & -pp \rightarrow t\bar{t} + W^{\pm} & \text{NEW! arXiv:2005.09427 [hep-ph]} \end{array}$

 Our predictions are available in the form of ROOT Ntuples. We can provide them along with a user-friendly software to extract physical results for your analysis. If interested, contact us!

A Zoom meeting room is available for further discussions.

Please find the details on next slide $\ \rightarrow$

Details of Zoom Meeting room (May 25, 16:30-17:00 CERN time)

Topic: Giuseppe Bevilacqua's Zoom Meeting

Date, Time: May 25, 2020 04:30 PM Paris

Click here to join

(same password of this parallel session)

In case of problems, just email me (giuseppe.bevilacqua_AT_science.unideb.hu)

Backup slides

Off-shell $t\bar{t}\gamma$: fixed vs dynamical scales

A collection of distributions based on the scale choice μ_{I}

$$\mu_R = \mu_F = \frac{m_t}{2}$$

G.B., Hartanto, Kraus, Weber and Worek, arXiv:1803.09916 [hep-ph]

G. Bevilacqua

Off-shell $t\bar{t}\gamma$: fixed vs dynamical scales

A collection of distributions based on the scale choice $|\mu|$

$$\mu_R = \mu_F = \frac{H_T}{4}$$

G.B., Hartanto, Kraus, Weber and Worek, arXiv:1803.09916 [hep-ph]

G. Bevilacqua

Off-shell $t\bar{t}\gamma$: comparisons to Run II data

"Theory NLO" = off-shell $t\bar{t}\gamma$ "Madgraph5" = double-resonant $t\bar{t}\gamma$ (LO) (HELAC-NLO) ATLAS-CONF-2019-042 $\frac{1}{10^{-1}} \cdot \frac{\frac{d\alpha}{dp}}{10^{-1}} \cdot \frac{1}{10^{-2}} \cdot \frac{1}$ d Ab(1.1) Preliminary Unfolded data Preliminary = 13 TeV, 139 fb⁻ s = 13 TeV, 139 fb AdGraph5 + Pythia8 + Pythia8 Normalised cross-section Normalised cross-section MadGraph5 + Herwig7 MadGraph5 + Herwig Theory NLO Theory NLO 0.8 Stat Stat
 Syst. Stat
 Syst. 0.6 10-2 0.4 10-3 0.2 10-4 15 1.5 Pred./Data Pred./Data 0.5 Theony/MC Theory/MC 1.2 11 0.8 0.9 50 100 200 2.5 150 250 300 0.5 1.5 3 p_(γ) [GeV] $\Delta \phi(I,I)$

$$\begin{split} \sigma_{\rm exp} \ &= \ 44.2 \pm 0.9 \ ({\rm stat})^{+2.6}_{-2.4} \ ({\rm syst}) \ {\rm fb} \ &= \ 44.2 \pm 2.6 \ {\rm fb} \\ \sigma_{\rm Theory \, NLO} \ &= \ 39.50^{+0.56}_{-2.18} \ ({\rm scale})^{+1.04}_{-1.18} \ ({\rm PDF}) \ {\rm fb} \end{split}$$

G. Bevilacqua

Off-shell $t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$: differential cross sections

Checks on dimensionful observables

G.B, Hartanto, Kraus, Weber and Worek, arXiv:1907.09359 [hep-ph]

 $- \mu = \mathbf{m_t} + \mathbf{m_Z}/2 \longrightarrow \mathsf{NLO}$ gets outside LO uncertainties $- \mu = \mathbf{H_T}/3, \mathbf{E_T}/3, \dots \rightarrow \text{ improves perturbative convergence}$

G. Bevilacqua