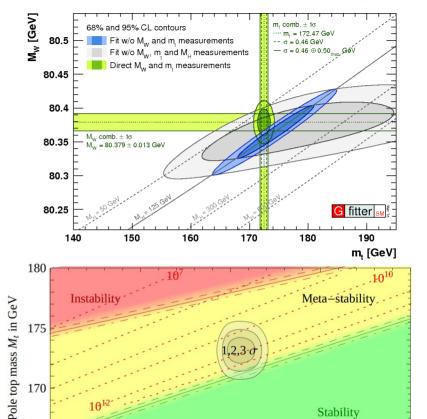


Top mass and width from CMS and ATLAS


Matteo Negrini INFN Bologna

On behalf of the CMS and ATLAS Collaborations

LHCP 2020, May 25-30, 2020

Top quark mass

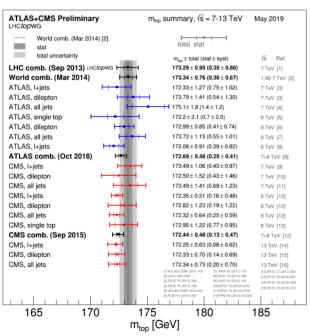
- The top quark is the heaviest elementary particle in the Standard Model
- m_t is an important parameter to assess the internal consistency of the SM at the EW scale and to make predictions up to very high scales (assuming the SM holds)
- The top quark, as well as all quarks, is not a free particle. Its mass can be determined through comparison with theoretical calculations.
- Uncertainty of single measurements at the sub-GeV level, combinations ~half-GeV.

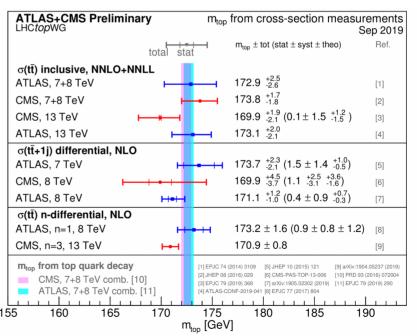
125

Higgs mass M_h in GeV

115 JHEP 08 (2012) 098 135

Stability


130

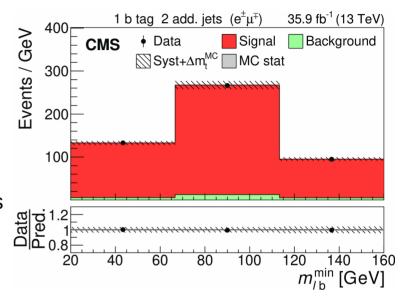

Measurements: overview

- "Direct" measurements: reconstruct invariant mass of decay products, or some other quantity highly sensitive to m_₁, compare with MC calculations (template methods) → m_₁^{MC}
- "Indirect" measurements: measure production cross-section (also differential) that can be compared to first-principle calculations $\rightarrow m_t^{POLE}, m_t^{\overline{MS}}$

Relation $m_{t}^{POLE} \leftrightarrow m_{t}^{\overline{MS}}$ calculated to 4-loops precision in QCD (Phys. Rev. Lett. 114 (2015) 142002)

Measurement of $\sigma_{t\bar{t}}$ and m_t^{MC}

13 TeV - 35.9 fb⁻¹ - Eur. Phys. J. C 79 (2019) 368

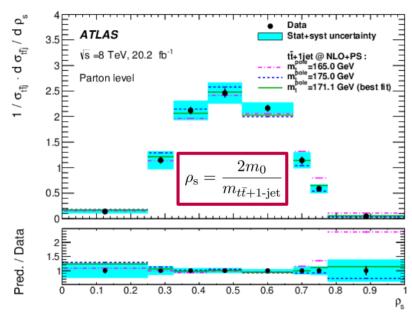

- Dilepton final state
- 12 event categories defined in terms of N_{jets}, N_{b-jets}
- Profile likelihood method that includes nuisance parameters corresponding to all systematic uncertainties. Use $m_t{}^{\text{MC}}$ as free parameter \rightarrow measure $\sigma_{t\bar{t}}$ and $m_t{}^{\text{MC}}$ simultaneously
- Enhanced sensitivity to m_t^{MC} obtained including m_{lb}^{min} (min mass of lepton-b pair in the event) among the fitted observables

$$m_{\rm t}^{\rm MC} = 172.33 \pm 0.14\,{\rm (stat)}\,^{+0.66}_{-0.72}\,{\rm (syst)}\,{\rm GeV}$$

Total uncertainty: 0.7 GeV (0.4%)

Also extracted m_tPOLE and m_tMS
 Values depending on the
 PDF set

PDF set	$m_{\rm t}(m_{\rm t})~({\rm GeV})$	m _t ^{pole} (GeV)
ABMP16	$161.6 \pm 1.6 \text{ (fit + PDF + } \alpha_S) \stackrel{+0.1}{_{-1.0}} \text{ (scale)}$	$169.9 \pm 1.8 \text{ (fit + PDF + } \alpha_S) ^{+0.8}_{-1.2} \text{ (scale)}$
NNPDF3.1	$164.5 \pm 1.6 (\text{fit} + \text{PDF} + \alpha_S) ^{+0.1}_{-1.0} (\text{scale})$	$173.2 \pm 1.9 (\text{fit} + \text{PDF} + \alpha_S) ^{+0.9}_{-1.3} (\text{scale})$
CT14	$165.0 \pm 1.8 \text{ (fit + PDF + } \alpha_S) ^{+0.1}_{-1.0} \text{ (scale)}$	$173.7 \pm 2.0 (\text{fit} + \text{PDF} + \alpha_S) ^{+0.9}_{-1.4} (\text{scale})$
MMHT14	$164.9 \pm 1.8 \text{ (fit + PDF + } \alpha_S) ^{+0.1}_{-1.1} \text{ (scale)}$	$173.6 \pm 1.9 (\text{fit} + \text{PDF} + \alpha_S) ^{+0.9}_{-1.4} (\text{scale})$



Pole mass with tt+1jet

8 TeV - 20.2 fb⁻¹ - JHEP 11 (2019) 150

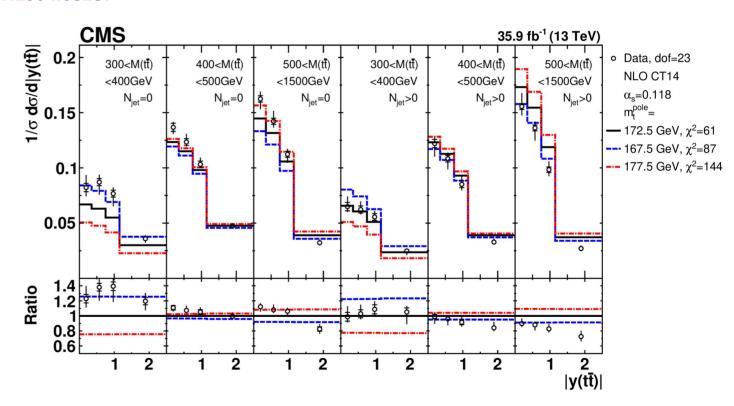
Determination of pole and running mass in the MS scheme:

$$m_t^{\text{pole}} = 171.1 \pm 0.4 \text{ (stat)} \pm 0.9 \text{ (syst)} ^{+0.7}_{-0.3} \text{ (theo) GeV}$$

 $m_t(m_t) = 162.9 \pm 0.5 \text{(stat)} \pm 1.0 \text{(syst)} ^{+2.1}_{-1.2} \text{ (theo) GeV}$

Total uncertainty: 1.2 GeV (0.7%) (POLE), 2.3 (1.4%) (MS)

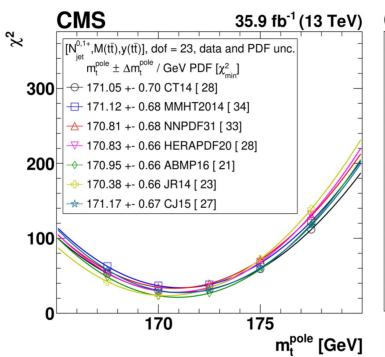
Mass scheme	$m_t^{\rm pole}$ [GeV]	$m_t(m_t)$ [GeV]	
Value	171.1	162.9	_
Statistical uncertainty	0.4	0.5	
Simulation uncertainties			_
Shower and hadronisation	0.4	0.3	Madalias
Colour reconnection	0.4	0.4	Modeling
Underlying event	0.3	0.2	
Signal Monte Carlo generator	0.2	0.2	
Proton PDF	0.2	0.2	
Initial- and final-state radiation	0.2	0.2	
Monte Carlo statistics	0.2	0.2	
Background	< 0.1	< 0.1	
Detector response uncertainties			
Jet energy scale (including b-jets)	0.4	0.4	Calibration
Jet energy resolution	0.2	0.2	
Missing transverse momentum	0.1	0.1	
b-tagging efficiency and mistag	0.1	0.1	
Jet reconstruction efficiency	< 0.1	< 0.1	
Lepton	< 0.1	< 0.1	
Method uncertainties			
Unfolding modelling	0.2	0.2	
Fit parameterisation	0.2	0.2	
Total experimental systematic	0.9	1.0	_
Scale variations	(+0.6, -0.2)	(+2.1, -1.2)	Theory
Theory PDF $\oplus \alpha_s$ Total theory uncertainty	0.2 (+ 0.7 , - 0.3)	0.4 (+2.1 , -1.2)	
Total uncertainty	(+1.2, -1.1)	(+2.3, -1.6)	_



Pole mass from multi-differential

13 TeV - 35.9 fb⁻¹ - arXiv:1904.05237

- Use dilepton events
- Triple-differential cross-section:
 N_{jet}, m_{tt̄}, y_{tt̄}
 unfolded at parton-level
- Dominant uncertainties: JES and signal modeling

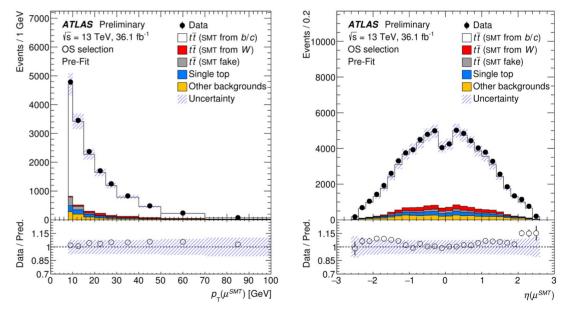


Pole mass from multi-differential

13 TeV - 35.9 fb⁻¹ - arXiv:1904.05237

Measurements compared with NLO predictions obtained using aMC@NLO (fixed order mode) for the simultaneous extraction of m_t^{POLE} , α_s and PDFs.

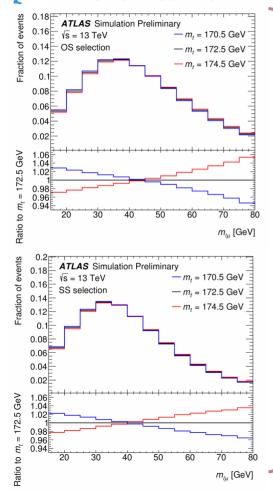
$$m_{\rm t}^{
m pole}=170.5\pm0.7({
m fit})\pm0.1({
m model})^{+0.0}_{-0.1}({
m param})\pm0.3({
m scale})\,{
m GeV}$$
 Total uncertainty: 0.8 GeV (0.47%)

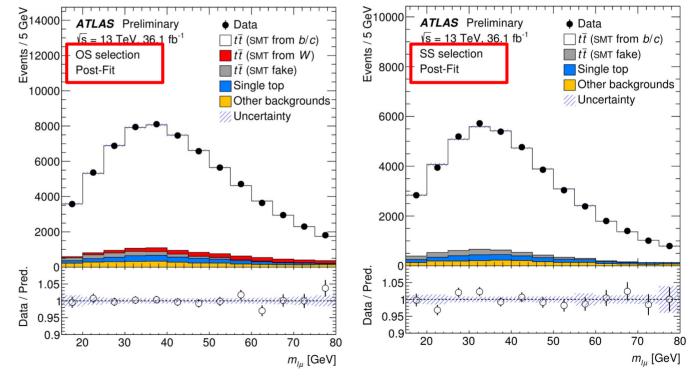

Top quark mass with Soft Muons

13 TeV - 36.1 fb-1 - ATLAS-CONF-2019-046

- I+jets events
- At least one SMT-tagged b-jet in the event → soft µ
- m_{Iµ}: invariant mass of the lepton from W-boson decay and the muon originated from a semileptonic b-hadron decay
- Reduced sensitivity to jet energy calibration and modeling of tt production kinematics (boost-invariant quantity, although distribution affected by top kinematics)

Soft Muon Tagging for b-jets: presence of a muon candidate within a distance ΔR <0.4 of a selected jet candidate


Soft muon kinematics

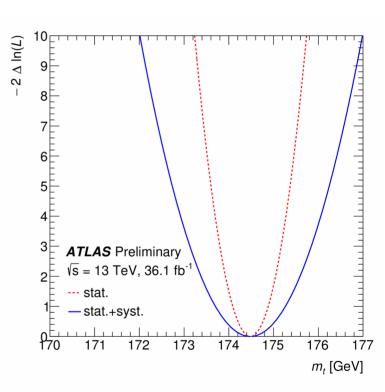

Top quark mass with Soft Muons

13 TeV - 36.1 fb-1 - ATLAS-CONF-2019-046

Both Opposite Sign (mainly $b \rightarrow \mu X$) and Same Sign (mainly $b \rightarrow c X \rightarrow \mu X$ ') events sensitive to the top quark mass

M. Negrini - LHCP 2020 - May 25-30, 2020

Top quark mass with Soft Muons


13 TeV - 36.1 fb-1 - ATLAS-CONF-2019-046

 $m_{l\mu}$ distribution used to determine m_t^{MC} through profile likelihood fit:

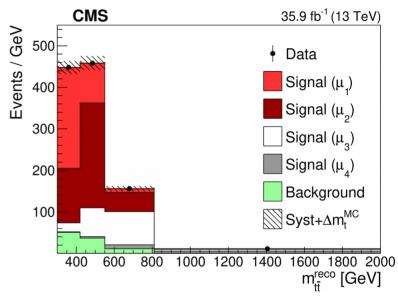
- free parameters: SS and OS tt normalizations and m_t^{MC} (model $m_{l\mu}$ distribution)
- no constraint observed on systematic uncertainty nuisance parameters

Systematic uncertainties are dominated by signal modeling. Main ones: b fragmentation and decay, tt production.

$$m_t = 174.48 \pm 0.40 \text{ (stat)} \pm 0.67 \text{ (syst) GeV}$$

Total uncertainty: 0.78 GeV (0.45%)

Running top quark mass


13 TeV - 35.9 fb⁻¹ - Phys. Lett. B 803 (2020) 135263

- Use tt event in the eµ channel
- The simulated sample is divided in 4 subsamples, corresponding to $m_{t\bar{t}}$ intervals at parton-level, treated as an independent signal process of $t\bar{t}$ production at the scale μ_k (mean $m_{t\bar{t}}$ in the bin)
- Maximum likelihood unfolding: the number of events in each bin ν_i is the sum of signal $s_i{}^k$ and background b_i and depends on the crosssection in each bin $\sigma_{t\bar{t}}{}^{(\mu)}$ and on $m_t{}^{MC}$ and nuisance parameters λ

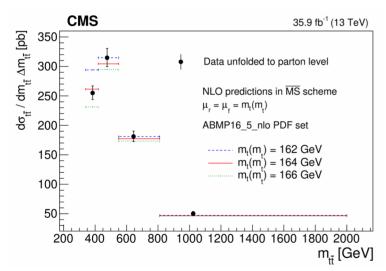
$$\nu_i = \sum_{k=1}^4 s_i^k(\sigma_{\mathsf{t}\bar{\mathsf{t}}}^{(\mu_k)}, m_{\mathsf{t}}^{\mathsf{MC}}, \vec{\lambda}) + \sum_j b_i^j(m_{\mathsf{t}}^{\mathsf{MC}}, \vec{\lambda})$$

• Sub-categories in each $m_{t\bar{t}}$ bin are defined based on the number of b-jets

Input distributions to the fit in all event categories:

	$N_{\rm b} = 1$	$N_{\rm b} = 2$	Other $N_{\rm b}$
$N_{\rm jets} < 2$	$N_{\rm events}$	n.a.	$N_{ m events}$
$N_{ m jets} < 2 \ m_{ m tar{t}}^{ m reco} \ 1$	$m_{\ell \mathrm{b}}^{\mathrm{min}}$	jet $p_{ m T}^{ m min}$	$N_{ m events}$
$m_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{reco}}$ 2	$m_{\ell \mathrm{b}}^{\mathrm{min}}$	jet $p_{ m T}^{ m min}$	$N_{ m events}$
$m_{\rm t\bar{t}}^{\rm reco}$ 3	$m_{\ell { m b}}^{ m min}$	jet $p_{ m T}^{ m min}$	$N_{ m events}$
$m_{ m tar{t}}^{ m reco}$ 4	$N_{ m events}$	$N_{ m events}$	$N_{\rm events}$

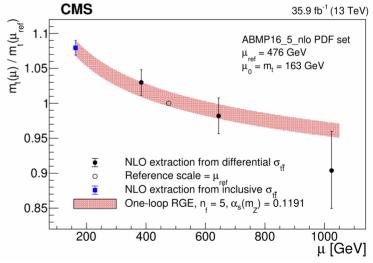
 \mathbf{m}_{lb}^{min} : min mass of lb pair jet \mathbf{p}_{T}^{min} : \mathbf{p}_{T} of softest jet



Running top quark mass

13 TeV - 35.9 fb⁻¹ - Phys. Lett. B 803 (2020) 135263

- Theoretical predictions in the MS scheme at NLO implemented in MCFM v6.8
- Using ABMP16_5_nlo PDF set, in which m_t is treated in the MS scheme



The plot shows the measured values of $\sigma_{t\bar{t}}^{(\mu)}$ compared to NLO calculations at in the \overline{MS} scheme for different $m_t(m_t)$

The value of $m_t(m_t)$ is determined independently in each m_{tt} bin

 $m_t(m_t) \rightarrow m_t(\mu_k)$ at one loop precision using CRunDec_v3.0

Measured running mass compared with the evolution from $m_t(m_t) = 162.9 \pm 1.6$ (fit+extr+PDF+ α s) +2.5_{-3.0} (scales) GeV \rightarrow Total uncertainty: 3.4 GeV (2.1%) obtained from the inclusive cross-section

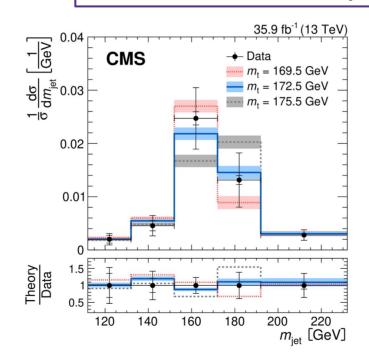
Ratios with respect to a reference scale, to exploit cancellations in the uncertainty

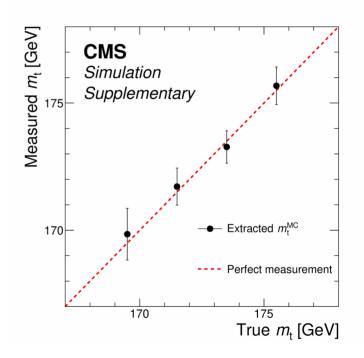
Top quark mass in boosted tt events

13 TeV - 35.9 fb⁻¹ - arXiv:1911.03800

- Boosted I+jets topology
- Exclusive XCone algorithm in 2 steps:
 - 1) 2 jets R=1.2
 - 2) 2 (lept) or 3 (hadr) sub-jets R=0.4
- p_{T,jet}>400 GeV, m_{jet}=mass of the 3 subjets of hadronic candidate

Top quark mass in boosted tt events




13 TeV - 35.9 fb⁻¹ - arXiv:1911.03800

Measurement of m_t^{MC} using m_{jet} , unfolded at particle level.

Impressive improvement on m_t from boosted tops with respect to 8 TeV result (9.0 GeV total uncertainty), mainly due to larger sample size and XCone jet reconstruction.

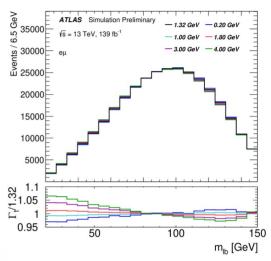
 $m_t = 172.6 \pm 0.4 \text{ (stat)} \pm 1.6 \text{ (syst)} \pm 1.5 \text{ (model)} \pm 1.0 \text{ (theo)} \text{ GeV}$ Total uncertainty: 2.5 GeV (1.4%)

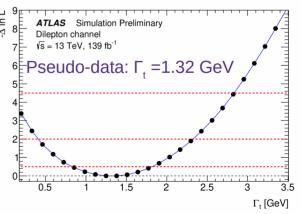
Top quark width: overview of techniques

- Recent calculation at NNLO: Γ_t =1.322 GeV, for m_t =172.5 GeV (Phys. Rev. Lett. 110 (2013) 042001)
- Deviations from the SM could indicate non-SM decays or non-SM couplings of the top quark
- "Indirect" methods \rightarrow extract Γ_t from B(t \rightarrow bW) measurements, assuming the SM Most precise indirect measurement by CMS: $\Gamma_t = 1.36 \pm 0.02 (stat)^{+0.14}_{-0.11} (syst)$ GeV (Phys. Lett. B 736 (2014) 33)
- "Direct" methods \rightarrow extraction from distributions sensitive to Γ_t . Larger uncertainty limited by the experimental resolutions

Previous measurements:

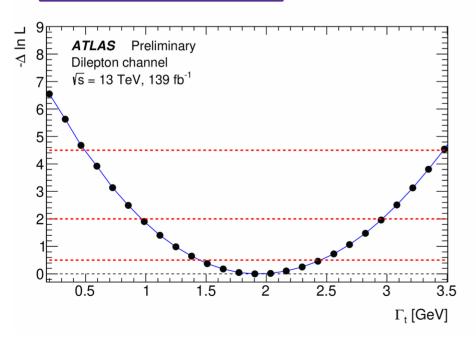
- CDF: based on the reconstructed m_{top} distribution: 1.10 < Γ_t < 4.05 GeV (68% CL) (Phys. Rev. Lett. 111 (2013) 202001)
- ATLAS \sqrt{s} =8 TeV, 20fb-1: using I-jets, based on m_{lb} and $\Delta R_{min}(j_b,j_l)$: Γ_t = 1.76±0.33(stat)+0.79_{-0.68}(syst) GeV (Eur. Phys. J. C 78 (2018) 129)
- Herwig, Jezo, Nachman: reinterpretation of ATLAS measurement using non-resonant production: $\Gamma_t = 1.28 \pm 0.30$ GeV (Phys. Rev. Lett. 122 (2019) 231803)




Direct measurement of top quark width

13 TeV - 139 fb⁻¹ - ATLAS-CONF-2019-038

- New analysis: dilepton channel
- Choice of distribution sensitive to Γ_t : m_{lb} (invariant mass of the lepton and b-jet of leptonic top).
 - m_{lb} > 150 GeV sensitive to NLO effects in top decay, so not considered in the analysis
- Strategy:
 - create templates of m_{lb} for different Γ_t values
 - profile likelihood fit on data
 - fit validation using pseudo-experiments at different Γ_t (closure obtained within 0.01 GeV)



Direct measurement of top quark width

13 TeV - 139 fb⁻¹ - ATLAS-CONF-2019-038 Measured top quark width:

$$\Gamma_{\rm t}$$
 = 1.94^{+0.52}_{-0.49} GeV
Total uncertainty: 26%

Statistical uncertainty: 0.21 GeV

Contributions to the systematic uncertainty

Source	Impact on Γ_t [GeV]	
Jet reconstruction	±0.24	
Signal and bkg. modelling	± 0.19	
MC statistics	± 0.14	
Flavour tagging	±0.13	
$E_{\mathrm{T}}^{\mathrm{miss}}$ reconstruction	± 0.09	
Pile-up and luminosity	± 0.09	
Electron reconstruction	± 0.07	
PDF	± 0.04	
$t\bar{t}$ normalisation	± 0.03	
Muon reconstruction	± 0.02	
Fake-lepton modelling	±0.01	

Dominated by jet calibration, bkg model, MC statistics, b-tagging

Summary

- m_t is a fundamental parameter of the SM that allows precision tests of the SM and provides insights on the fate of the universe
- Improving on current uncertainty at few hundreds MeV poses experimental and theoretical challenges
- The ultimate m_t determination is not a single measurement but a physics program, that includes:
 - techniques with uncertainties coming from different sources
 - different theoretical interpretations
- Direct measurements of Γ_t consistent with SM expectation but affected by larger uncertainties than indirect ones