Higgs couplings and mass measurements in the ZZ and WW decay channels with ATLAS and CMS

Will Leight for the ATLAS and CMS Collaborations

$H \rightarrow ZZ^* \rightarrow 4I$ Decay Channel

- Low BR of ~0.01%, but high purity with S/B~2 in the mass peak
- Useful for many Higgs boson properties measurements
- ATLAS and CMS both have ~200 signal events with the full Run-2 sample

Higgs Boson Mass

ATLAS-CONF-2020-005

- First mass measurement with full Run-2 dataset
- Recover FSR, constrain m_{12} to m_Z (15% resolution gain)
- Parametrize m₄₁ distribution as double-sided Crystal Ball function
 - Analysis categories based on final state (resolution) and BDT (for better S/B)
 - Background shapes from smoothed MC, ZZ^{*} norm floats

- Not a test of the Standard Model
 - ► m_H is a free parameter
- Important ingredient in SM predictions
- Best measured in clean channels like
 H→ZZ^{*}→4I

Higgs Boson Mass

ATLAS-CONF-2020-005

- First mass measurement with full Run-2 dataset
- Recover FSR, constrain m₁₂ to m_z (15% resolution gain)
- Parametrize m₄₁ distribution as double-sided Crystal **Ball function**
 - Analysis categories based on final state (resolution) and BDT (for better S/B)
 - Background shapes from smoothed MC, ZZ^{*} norm floats

GeV 1.25 $80 \vdash H \rightarrow ZZ^* \rightarrow 4I$ Events / √s = 13 TeV 139 fb⁻ 70 60 50F 40F 30 20

► ~2% better resolution, more robust to fluctuations

- Lepton momentum resolution is non-Gaussian \rightarrow hard to calculate m₄₁ resolution from lepton resolutions
 - Constraint on m₁₂ introduces correlations between leading leptons
- Train a NN to predict m₄₁ resolution using lepton and event-level information

Higgs Boson Mass

- Final result: m_H=124.92±0.21 GeV
 - ► Compare previous CMS 4I result 125.26±0.21 GeV
- 20% improvement on previous ATLAS result
- Still stat-dominated: leading systematic is muon momentum scale

Systematic Uncertainty	Impact (GeV)
Muon momentum scale	+0.08, -0.06
Electron energy scale	±0.02
Muon momentum resolution	±0.01
Muon sagitta bias correction	±0.01

- First mass measurement with full Run-2 dataset
- Recover FSR, constrain m₁₂ to m_z (15% resolution gain)
- Parametrize m₄₁ distribution as double-sided Crystal Ball function
 - Analysis categories based on final state (resolution) and BDT (for better S/B)
 - Background shapes from smoothed MC, ZZ^{*} norm floats

Simplified Template Cross Sections

- Target specific phase space regions within production modes
 - Using SM as a kinematic template
- Attempt to maximize experimental sensitivity and minimize dependence on theoretical uncertainties

HIG-19-001

Simplified Template Cross Sections

- Reconstructed categories are defined to target STXS bins
 - Both experiments use STXS Stage 1 with some bins merged

+ ATLAS: Reduced Stage 1.1; CMS: Stage 1.1

 Extract cross-sections in each bin from fit to values in categories HIG-19-001

arXiv:2004.03447

Neural Networks

- ATLAS approach uses fewer categories to reduce migrations
- To maintain sensitivity, train NNs to optimize signal efficiency
 - These are also used to define some category boundaries
- Final fits use NN distributions inside categories

Please see the talk of N. Belyaev on Friday for EFT interpretations!

Results

- Results obtained for (Reduced) STXS stage 1.1
 - Different bin mergings used by the 2 experiments
 - Note that ggZH is included in the ATLAS gg2H categories so the correspondence is not exact
- Good agreement with the SM observed in all cases

Phys. Lett. B 789 (2019) 508

H→WW→IIvv Decay Channel

Phys. Lett. B 789 (2019) 508

H→WW→IIvv Decay Channel

WW background constrained by CR (ATLAS) or as part of the final fit (CMS)

Top quark and Drell-Yan backgrounds constrained by CR's

Non-WW diboson backgrounds constrained by CRs or taken from MC

Misidentified lepton backgrounds estimated from data

- Much higher BR than $H \rightarrow ZZ^* \rightarrow 4I$, ~1%
- More backgrounds, final state not fully reconstructed
- STXS stage 1 difficult but stage 0 (production modes) possible

$VH \rightarrow WW: WH$

min(ΔR_{II}) between the oppositely charged leptons

BDTs for S/B rejection (separate in each category)

VH→WW: ZH, VH(had)

- ZH is fairly pure but low stats
- Split on # of SFOS lepton pairs
- Counting only

- V→2j has higher BR but much more background
- Dominantly from tW and ttbar
- Require central jets for b-tagging
- m_{II} as variable

Couplings Measurements

- Measure cross section in production modes
- Mostly good agreement with the SM observed

Summary

- Higgs decays to all-leptonic diboson final states provide valuable probes of its properties
- H→ZZ^{*}→4I can be used for precision measurements of the Higgs mass
- Both channels are used for couplings measurements in the STXS framework
- Final $H \rightarrow ZZ^* \rightarrow 4I$ results using Run-2 data are here
 - Though still room for more interpretations
- H→WW→IIvv not yet exploiting the full dataset
- Stay tuned for more results!

Backup

Expected vs. Measured m_H Uncertainty

CMS 41 Mass Measurement

- 3D likelihood includes mass, mass resolution, kinematic discriminant
 - Discriminant to separate signal and background
 - Final result uses mass and resolution with Z-mass constraint applied to leading lepton pair

STXS Correlation Matrices

ATLAS H→WW Measurements

Eg. SMEFT, SUSY, Composite Higgs, ??, ... Effective Field Theory Interpretations

$$\mathcal{L} = \mathcal{L}^{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + (\dim > 6)$$

- Add new physics to the Lagrangian without committing to specific model
- Wilson coefficients for generic interactions

 $O_{HG} \sim c_{HG} H H^{\dagger} G^{A}_{\mu\nu} G^{\mu\nu A}$ CP-even interaction between Higgs and gluons

Eg. SMEFT, SUSY, Composite Higgs, ??, ... Effective Field Theory Interpretations

$$\mathcal{L} = \mathcal{L}^{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + (\dim > 6)$$

 $O_{HG} \sim c_{HG} H H^{\dagger} G^{A}_{\mu\nu} G^{\mu\nu A}$ CP-even interaction between Higgs and gluons

- Add new physics to the Lagrangian without committing to specific model
- Wilson coefficients for generic interactions
- Parametrize predictions in STXS bins
 - Include effects on cross sections, branching fractions, in some cases acceptances

Eg. SMEFT, SUSY, Composite Higgs, ??, ... Effective Field Theory Interpretations

 $O_{HG} \sim c_{HG} H H^{\dagger} G^{A}_{\mu\nu} G^{\mu\nu A}$ CP-even interaction between Higgs and gluons

- Fit to STXS results to constrain values of Wilson coefficients
- Best-fit values are all consistent with 0

CP-Odd Wilson Coefficients

