

Higgs differential measurements with ATLAS and CMS

Andrea Gabrielli - CERN

on behalf of ATLAS and CMS experiments

fiducial cross-sections

- fiducial phase space based on the real analysis and detector acceptance and extrapolation effects are minimised
- fiducial cross-sections are the most model independent way to measure Higgs interactions at LHC

- limitations:

- to combine more channels the extrapolation to the total phase space is needed (including BR)
- less sensitive exclusion limits on BSM couplings compared to a dedicated analysis

detector/analysis acceptance fiducial phase space

- unfolded quantities:

- Higgs boson kinematics in production and decay e.g p_T, Y_H, cos9^{*}, m₃₄
- jet produced in association with an Higgs e.g. n_{jets}, m_{jj}, p_Tlead,jet
- Higgs boson and jets e.g. pt, 4ljj

analysis flow

step #2

reconstructed quantity

binning choice:

expected number of events, detector resolution, S/B,

unfolding method: matrix

inversion, bin-by-bin correction, regularised, bayesian ...

observable: $m_{4\ell}$, $m_{\gamma\gamma}$, m_T ,

counting, ...

step #3

$H \rightarrow ZZ^* \rightarrow 4\ell$

final RUN2 paper!! arXiv:2004.03969 submitted EPJC

CMS-PAS-HIG-19-001

- fully reconstructible final state and very high S/B ~ 2
- signal signature: 4 isolated leptons (μ,e) at "low" p_T (5-20 GeV) 2
 lepton pairs same flavour opposite sign
- excellent mass resolution 1-2% m_H
- main background: qq(gg)→ZZ* estimated using only MC in case of CMS or data sidebands and MC for ATLAS

H→4ℓ: differential cross sections

- high p_T region is sensitive to heavy additional particles in the ggF loop
- low p_T region is sensitive to the Yukawa coupling of the b and charm quark

ATLAS limit on κ_c (κ_b free) @139 fb⁻¹

- p_T shape only $\kappa_c \in$ (-12,11) @95% CL - p_T shape and prediction $\kappa_c \in$ (-7.5,9.3) @95% CL

H→4ℓ: differential cross sections

- m₃₄ mass of the sub-leading pair: BSM contributions can distort the shape (EFT operators or light resonances)
- n_{iets} is sensitive to production mode composition and gluon emission

$H \rightarrow 4\ell$: double-differential cross-sections

granularity mainly limited by data statistics. with RUN3 and HL-LHC will be possible to have finer binning

$H \rightarrow \gamma \gamma$

ATLAS-CONF-2019-029

- fully reconstructible final state but lower S/B compared to $4\ell \sim 10^{-1}$ - 10^{-2}
- signal signature: 2 isolated photons
- excellent mass resolution 1-2% m_H
- main background: continuum xx production estimated from data sidebands

H-yy: differential cross-sections

- measurement of the differential cross section still statistically dominated
- **ATLAS** limit on κ_c @139 fb⁻¹, p_T shape only κ_c ∈ (-19,24) @95% CL

H→yy: EFT interpretation

limits are derived fitting one coefficient at a time setting other coefficients to zero

- constrain dimensionless Wilson coefficients of dimension-6 anomalous interactions of EFT Lagrangian using observed differential: p_T , n_{jets} , m_{jj} , $\Delta \varphi_{jj}$, $p_T^{lead,jet}$
- no significant new physics contributions are observed

EFT talk: Nikita Belyaev Fri 15:15

$H \rightarrow WW$

CMS-PAS-HIG-19-002

- large signal but not fully reconstructible final state and low S/B ~ 10-1-10-2
- main backgrounds: WW*, tt shapes evaluated with MC and normalisation from data

H→WW: differential cross-sections

- cross section extracted by fitting two dimensional distribution (m_T, m_{$\ell\ell$}) in each bin $m_{\rm T}^{\rm H} = \sqrt{2p_{\rm T}^{\ell\ell}p_{\rm T}^{\rm miss}\left[1-\cos\Delta\phi(\vec{p}_{\rm T}^{\ell\ell},\vec{p}_{\rm T}^{\rm miss})\right]}$
- competitive channel with $\gamma\gamma$ at high p_T and high jet multiplicity: uncertainties < 100% for $n_{jet} \ge 3$ and $p_T > 200$ GeV

combined differential cross sections

- extrapolation to the full phase space: larger theory uncertainties with respect to fiducial measurements (including BR)
- ATLAS: p_{T,H} combination 4ℓ and γγ @ 139 fb⁻¹, n_{jets}, y_H, lead jet _{pT} @ 36fb⁻¹
- CMS: p_{T,H}, n_{jets}, y_H, lead jet p_T combination 4ℓ, γγ and bb @36 fb⁻¹
- CMS: light Yukawa couplings interpretation using 4ℓ, γγ

Hbb talk: Stephen

Jiggins Thu 14:30

Combination: Jonathon

Langford Fri 13:00

conclusions

- several differential cross sections measurements of the Higgs Boson have been performed in ATLAS and CMS (dominated by statistical uncertainties)
- very good agreement between Standard Model predictions and experimental results
- measurements have been interpreted via: κ-framework (light Yukawa couplings), pseudo-observables, EFT. no significant new physics contributions are observed
- many new results with full Run2 dataset still to come: stay tuned!