Higgs differential measurements with ATLAS and CMS **Andrea Gabrielli - CERN** on behalf of ATLAS and CMS experiments # fiducial cross-sections - fiducial phase space based on the real analysis and detector acceptance and extrapolation effects are minimised - fiducial cross-sections are the most model independent way to measure Higgs interactions at LHC ### - limitations: - to combine more channels the extrapolation to the total phase space is needed (including BR) - less sensitive exclusion limits on BSM couplings compared to a dedicated analysis # detector/analysis acceptance fiducial phase space ### - unfolded quantities: - Higgs boson kinematics in production and decay e.g p_T, Y_H, cos9^{*}, m₃₄ - jet produced in association with an Higgs e.g. n_{jets}, m_{jj}, p_Tlead,jet - Higgs boson and jets e.g. pt, 4ljj # analysis flow step #2 ### reconstructed quantity ### binning choice: expected number of events, detector resolution, S/B, ### **unfolding method:** matrix inversion, bin-by-bin correction, regularised, bayesian ... observable: $m_{4\ell}$, $m_{\gamma\gamma}$, m_T , counting, ... ### step #3 # $H \rightarrow ZZ^* \rightarrow 4\ell$ ### final RUN2 paper!! arXiv:2004.03969 submitted EPJC ### CMS-PAS-HIG-19-001 - fully reconstructible final state and very high S/B ~ 2 - signal signature: 4 isolated leptons (μ,e) at "low" p_T (5-20 GeV) 2 lepton pairs same flavour opposite sign - excellent mass resolution 1-2% m_H - main background: qq(gg)→ZZ* estimated using only MC in case of CMS or data sidebands and MC for ATLAS ### H→4ℓ: differential cross sections - high p_T region is sensitive to heavy additional particles in the ggF loop - low p_T region is sensitive to the Yukawa coupling of the b and charm quark **ATLAS** limit on κ_c (κ_b free) @139 fb⁻¹ - p_T shape only $\kappa_c \in$ (-12,11) @95% CL - p_T shape and prediction $\kappa_c \in$ (-7.5,9.3) @95% CL ### H→4ℓ: differential cross sections - m₃₄ mass of the sub-leading pair: BSM contributions can distort the shape (EFT operators or light resonances) - n_{iets} is sensitive to production mode composition and gluon emission ### $H \rightarrow 4\ell$: double-differential cross-sections granularity mainly limited by data statistics. with RUN3 and HL-LHC will be possible to have finer binning # $H \rightarrow \gamma \gamma$ ### ATLAS-CONF-2019-029 - fully reconstructible final state but lower S/B compared to $4\ell \sim 10^{-1}$ - 10^{-2} - signal signature: 2 isolated photons - excellent mass resolution 1-2% m_H - main background: continuum xx production estimated from data sidebands # H-yy: differential cross-sections - measurement of the differential cross section still statistically dominated - **ATLAS** limit on κ_c @139 fb⁻¹, p_T shape only κ_c ∈ (-19,24) @95% CL # H→yy: EFT interpretation limits are derived fitting one coefficient at a time setting other coefficients to zero - constrain dimensionless Wilson coefficients of dimension-6 anomalous interactions of EFT Lagrangian using observed differential: p_T , n_{jets} , m_{jj} , $\Delta \varphi_{jj}$, $p_T^{lead,jet}$ - no significant new physics contributions are observed EFT talk: Nikita Belyaev Fri 15:15 ## $H \rightarrow WW$ ### CMS-PAS-HIG-19-002 - large signal but not fully reconstructible final state and low S/B ~ 10-1-10-2 - main backgrounds: WW*, tt shapes evaluated with MC and normalisation from data ### H→WW: differential cross-sections - cross section extracted by fitting two dimensional distribution (m_T, m_{$\ell\ell$}) in each bin $m_{\rm T}^{\rm H} = \sqrt{2p_{\rm T}^{\ell\ell}p_{\rm T}^{\rm miss}\left[1-\cos\Delta\phi(\vec{p}_{\rm T}^{\ell\ell},\vec{p}_{\rm T}^{\rm miss})\right]}$ - competitive channel with $\gamma\gamma$ at high p_T and high jet multiplicity: uncertainties < 100% for $n_{jet} \ge 3$ and $p_T > 200$ GeV ### combined differential cross sections - extrapolation to the full phase space: larger theory uncertainties with respect to fiducial measurements (including BR) - ATLAS: p_{T,H} combination 4ℓ and γγ @ 139 fb⁻¹, n_{jets}, y_H, lead jet _{pT} @ 36fb⁻¹ - CMS: p_{T,H}, n_{jets}, y_H, lead jet p_T combination 4ℓ, γγ and bb @36 fb⁻¹ - CMS: light Yukawa couplings interpretation using 4ℓ, γγ Hbb talk: Stephen Jiggins Thu 14:30 Combination: Jonathon Langford Fri 13:00 # conclusions - several differential cross sections measurements of the Higgs Boson have been performed in ATLAS and CMS (dominated by statistical uncertainties) - very good agreement between Standard Model predictions and experimental results - measurements have been interpreted via: κ-framework (light Yukawa couplings), pseudo-observables, EFT. no significant new physics contributions are observed - many new results with full Run2 dataset still to come: stay tuned!