

PRECISE PREDICTIONS FOR BOOSTED HIGGS PRODUCTION THE 8TH LHCP CONFERENCE (ONLINE)

Universität Zürich^{uz}^H Xuan Chen Physik-Institut, Universität Zürich Zoom, May 26, 2020

SUCCESS OF LHC HIGGS EXPERIMENTS

Higgs boson properties in agreement with SM

- Bosonic (Run I) and 3rd generation fermionic couplings (Run II) observed with current precision on coupling ±10-20% (EPS2019)
- ► Higgs mass uncertainty at ±0.2% level
- Fiducial total cross section measured with ± 9% accuracy (Run I + II)
- ➤ 2nd generation fermion couplings still to be established
- HH signal with 10 times SM exclusion limit
- Adventure to explore full potential of the LHC
 - Differential in production and decay channels
 - New targets of precision and fiducial regions
 - Accelerate searches of new physics

Xuan Chen (UZH)

Precise predictions for boosted Higgs production

May 26, 2020

INGREDIENTS OF HIGGS PRODUCTION AT LHC

- Higgs Boson produced at the LHC with four main production channels
- Total cross section accuracy is currently at NLO QCD + EW and above with: ggF@N3LO QCD, VBF@N3LO QCD, VH@NNLO QCD

HIGGS TRANSVERSE MOMENTUM SPECTRUM

- Challenge for both EXP and TH for systematic error estimation
- Sensitive to BSM like extra generation of quarks, off-shell effects and etc.

Xuan Chen (UZH)

Precise predictions for boosted Higgs production

May 26, 2020

3

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION

Two approaches to include top mass effects

- Expansion valid for $m_H^2, m_t^2 \ll |s| \sim |t| \sim |u|$ 1703.03886, 1802.02981
- Exact results at NLO SM (numerical in SecDec) <u>1802.00349</u>
- Joint effort in HH: exact numerical+expansion <u>1907.06408</u>
- Precision challenge from EXP and TH
 - ► ggF channel NLO SM scale uncertainties ~ 20%
 - ► Run II statistics has > 50% error above 350 GeV
- ➤ ggF channel is not the full picture
 - Boosted Higgs enhanced by quark PDFs
 - ► VH dominants over ggF at 1.2 TeV (~1/3)
 - ► ttH and VBF channels contribute about 1/3.
 - ► Joint effort is needed to include all channels

Xuan Chen (UZH)

Precise predictions for boosted Higgs production

May 26, 2020

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION (GGF)

- ► Ideally, we need NLO SM accuracy and NNLO EFT precision
- ► With assumption that NNLO SM also has flat K-factors at large pT, we rescale: $\Sigma^{\text{EFT-improved (1), NNLO}}(p_{\perp}^{\text{cut}}) \equiv \frac{\Sigma^{\text{SM, NLO}}(p_{\perp}^{\text{cut}})}{\Sigma^{\text{EFT, NLO}}(p_{\perp}^{\text{cut}})} \Sigma^{\text{EFT, NNLO}}(p_{\perp}^{\text{cut}})$

Xuan Chen (UZH)

Precise predictions for boosted Higgs production

May 26, 2020

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION (GGF)

- Error estimation of EFT-improved NNLO predictions:
 - ▶ From scale variation of $\Sigma^{\text{SM, NLO}}/\Sigma^{\text{EFT, NLO}}$ and $\Sigma^{\text{EFT, NLO}}$
 - ► Independent 7-point scale variation then combine quadrature or linearly

Xuan Chen (UZH)

Precise predictions for boosted Higgs production

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION (GGF)

Comparison among public event generators in HXSWG 2005.07762:

Fixed order level	Total	$p_{\perp}^{\rm cut} > 400 { m ~GeV}$	$p_{\perp}^{\rm cut} > 450 { m ~GeV}$	$p_{\perp}^{\rm cut} > 500 { m ~GeV}$
$ggh_{m_t=\infty}^{hfact=104}$	$30.3^{+6.1}_{-4.7}$	$0.0829\substack{+0.0451\\-0.0266}$	$0.0577^{+0.0325}_{-0.019}$	$0.0408\substack{+0.0236\\-0.0137}$
HJ $m_t = \infty, 5$ GeV gen. cut		$0.0651\substack{+0.0156\\-0.0131}$	$0.0417\substack{+0.01\\-0.0084}$	$0.0279^{+0.0067}_{-0.0057}$
HJ $m_t = \infty$, 50 GeV gen. cut		$0.0651\substack{+0.0156\\-0.0131}$	$0.0418\substack{+0.01 \\ -0.0085}$	$0.0278\substack{+0.0066\\-0.0056}$
HJ-MiNLO $m_t=\infty$	$32.1^{+11}_{-4.9}$	$0.0803\substack{+0.9087\\-0.0164}$	$0.0524\substack{+0.0118\\-0.0107}$	$0.0353\substack{+0.0078\\-0.0072}$
HJ-MINLO $m_t = 171.3 \text{ GeV}$	$33.8^{+11.4}_{-5.2}$	$0.029\substack{+0.007\\-0.006}$	$0.0161\substack{+0.0036\\-0.0033}$	$0.0091\substack{+0.0021\\-0.0018}$

- POWHEG gg_h: NLO EFT accuracy for total cross section, LO EFT accuracy for pT 0812.0578
- POWHEG HJ: NLO EFT accuracy for pT <u>1202.5475</u>
- ► HJ-MiNLO: NLO EFT accuracy for pT with "EFT-improved (0) NLO" rescale feature <u>1212.4504</u>
- MG5_MC@NLO: (N)LO SM accuracy for pT with EFT virtual rescaled by LO SM 1604.03017, 1405.0301
- ► POWHEG and HJ-MiNLO are matched to Pythia 6 parton shower. <u>hep-ph/0603175</u>

Comparison with the current best:	$p_{\perp}^{ m cut}$	$\mathrm{NNLO}_{\mathrm{quad.unc.}}^{\mathrm{approximate}}$ [fb]	HJ-MINLO [fb]	MG5_MC@NLO [fb]
 General good agreement 	400 GeV	$33.3^{+10.9\%}_{-12.9\%}$	$29^{+24\%}_{-21\%}$	$31.5^{+31\%}_{-25\%}$
► +20% correction to NLO SM	430 GeV	$23.0^{+10.8\%}_{-12.8\%}$	-	$21.8^{+31\%}_{-25\%}$
► Uncertainty reduced by 70~100%	$450 {\rm GeV}$	$18.1^{+10.8\%}_{-12.8\%}$	$16.1^{+22\%}_{-21\%}$	$17.1^{+31\%}_{-25\%}$
Xuan Chen (UZH) Precise predic	tions for boos	ted Higgs production	Ma	ay 26, 2020

HIGGS TRANSVERSE MOMENTUM FROM VH, VBF AND TTH

Transverse momentum contributions from VH, VBF and ttH channels:

- ZH, W[±]H: NLO accuracy from POWHEG-BOX-V2 with 3-point scale variation <u>1306.2542</u>, <u>1002.2581</u>
- VBF: NNLO accuracy with structure function approach with 3-point scale variation <u>1506.02660</u>
- tīH: NLO accuracy from Sherpa+OpenLoops with 7-point scale variation 0811.4622, 1111.5206
- EW correction: NLO photonics corrections from Sherpa+OpenLoops 0811.4622, 1111.5206, 1412.5157, 1712.07975, 1907.13071

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION (ALL)

- Channel breakdown of Higgs transverse momentum at boosted region
 - Dominant uncertainties from ggF and ttH channel at 10%
 - ► NLO VH uncertainties at 5% and the state-of-the-art NNLO correction further reduce to 2%
 - ➤ ggF, VH and ttH uncertainties stays flat while VBF uncertainties increase at large pT
 - ► EW corrections are substantial at large pT but is currently unknown for ggF channel
 - New physics effects could affect various channels differently, recommendation for STXS

n ^{cut} [CeV]	$\Sigma^{\text{NNLO}_{\text{quad.unc.}}^{\text{approximate}}}$	cut) [fb]	Σ NNLO(n ^{cut}) [fb]	Σ NLO(n ^{cut}) [fb]	Σ NLO(ncut) [fb]	VBF	VH	$t\bar{t}H$
p_{\perp} [Gev]	$\simeq_{\rm ggF}$ (P		$\simeq_{\rm VBF}$ ($p_{\rm I}$) [10]	$\Delta_{\rm VH}$ (p) [10]	$2_{t\bar{t}H}(P_{\perp})$ [10]			C OF OT
400	$33.30^{10.89\%}_{-12.919}$	76	$14.23^{+0.15\%}_{-0.19\%}$	$11.16^{+4.12\%}_{-3.68\%}$	$6.89^{+12.62\%}_{-12.97\%}$	-17.80%	-19.05%	-6.95%
450	$18.08_{-12.79}^{10.78\%}$	6	$8.06^{+0.24\%}_{-0.23\%}$	$6.87^{+4.6\%}_{-3.49\%}$	$4.24^{+12.84\%}_{-13.15\%}$	-19.43%	-20.83%	-7.75%
500	$10.17^{10.67\%}_{-12.749}$	6	$4.75^{+0.33\%}_{-0.29\%}$	$4.39^{+4.43\%}_{-4.04\%}$	$2.6 \delta^{+12.85\%}_{-13.22\%}$	-21.05%	-22.50%	-8.49%
550	$5.87^{10.54\%}_{-12.60\%}$		$2.90^{+0.34\%}_{-0.36\%}$	$2.87^{+4.44\%}_{-3.74\%}$	$1.76^{+14.23\%}_{-13.93\%}$	-22.34%	-24.07%	-9.11%
600	$3.48^{10.35\%}_{-12.49\%}$		$1.82^{+0.41\%}_{-0.39\%}$	$1.91^{+5.22\%}_{-4.71\%}$	$1.11^{+12.99\%}_{-13.4\%}$	-23.73%	-25.56%	-9.91%
650	$2.13^{10.23\%}_{-12.45\%}$		$1.17^{+0.49\%}_{-0.39\%}$	$1.30^{+4.67\%}_{-4.28\%}$	$0.72^{+12.6\%}_{-13.26\%}$	-25.03%	-26.98%	-10.67%
700	$1.32^{10.03\%}_{-12.32\%}$		$0.77^{+0.57\%}_{-0.45\%}$	$0.90^{+4.15\%}_{-5.4\%}$	$0.47^{+11.42\%}_{-12.74\%}$	-26.29%	-28.30%	-11.37%
750	$0.84^{10.05\%}_{-12.31\%}$	5	$0.51^{+0.69\%}_{-0.56\%}$	$0.62^{+5.15\%}_{-4.66\%}$	$0.32^{+11.53\%}_{-12.84\%}$	-27.35%	-29.60%	-11.94%
800	$0.54^{9.91\%}_{-12.24\%}$		$0.35^{+0.71\%}_{-0.6\%}$	$0.44^{+5.64\%}_{-4.13\%}$	$0.22^{+11.42\%}_{-13.3\%}$	-28.42%	-30.83%	-12.51%

FUTURE WORK AND CONCLUSION Thank you!

- Higgs boson precision measurements focus on differential observables and distinguishing production and decay channels
- Higgs boson precision predictions focus on reducing uncertainties from all sources. FO QCD corrections, EW at large scale, Parton Shower effects etc.
- Boosted Higgs is becoming the focus to improve EXP and TH precision to accelerate searches for new physics
- Higgs properties are different in boosted than in the bulk of the fiducial regions. Theory uncertainty is at 10-15% level for pT > 400 GeV.
- New source of theory uncertainties to be studied in the future
 - ➤ Top mass schemes (Substantial @ LO, reduced considerably @ NLO)
 - PDF and couplings uncertainties (Systematically improvable)
 - More reliable rescaling for quark mass effect (Event by event rescaling)
 - ► Upgrade VH and VBF predictions at NNLO and N3LO.

Xuan Chen (UZH)

Precise predictions for boosted Higgs production

TEST NUMERICAL STABILITY OF MATRIX ELEMENTS

- Construct antenna subtraction terms (ATS) to mimic unresolved limits of matrix elements (ME)
- ► Test function (tree level): $R = \frac{ME^0}{AST^0}$
- R ~ the horizontal axis (centre at one near the unresolved region)
- Number of P.S. points in each bin ~ the vertical axis
- Controlling singular region correctly will achieve spike plots
- ► For example: $p_1 + p_2 \rightarrow p_3 + p_4 + p_5$ Single collinear limit: $x = \frac{s_{45}}{s}, x \sim 10^{-8}$

Single soft limit: $xs = s_{35} + s_{45}, \quad x \sim 10^{-7}$

May 26, 2020 **B**1

Single collinear - 3/4

TEST NUMERICAL STABILITY OF MATRIX ELEMENTS

- Ideally we would like to use ME from automated tools
- However, not many of them are numerical stable in IR singular regions
- DenLoops2 is one of the best autotools optimised in IR singular regions
 - ► However for a loop-induced process: $g_1 + g_2 \rightarrow \gamma + \gamma + g_3 + g_4$
 - ► Test function (loop induced): $R = \frac{ME^{1}}{AST^{1}}$
 - ➤ We observe spikes break down at single collinear limit: $x \sim 10^{-7}$ single soft limit: $x \sim 10^{-4}$

Precise predictions for boosted Higgs production

May 26, 2020 B2