

<u>Higgs measurements in 3rd generation decay</u> <u>channels (excl. ttH) with ATLAS and CMS</u>

On behalf of the ATLAS & CMS Collaborations

Stephen Jiggins 28/05/20

Introduction

 \rightarrow Summary of the latest ATLAS & CMS 3rd generation decay channel Higgs measurements

 \rightarrow Talk will only address 3rd generation Higgs decays: $H \rightarrow [bb, \tau\tau]$

Introduction

 \rightarrow Summary of the latest ATLAS & CMS 3rd generation decay channel Higgs measurements

 \rightarrow Talk will only address 3rd generation Higgs decays: $H \rightarrow [bb, \tau\tau]$

Source: PhysRevD 101.012002

production?

- \rightarrow QCD background dominant ~ 10⁷ > signal
- \rightarrow Limited by ggF ZH theoretical accuracy \rightarrow See X, Chen talk

 $\rightarrow \dots$

 \rightarrow Hopefully a new σ^{ggF}_{bb} entry soon... 28/05/20

$H \rightarrow bb$

H→ bb Searches in ATLAS & CMS

28/05/20

$H \rightarrow bb: VH \rightarrow bb Analyses$

Increase p_{T}^{H}

ATLAS-CONF-2020-006 ATLAS-CONF-2020-007

Higgs Candidate Reco.:

• 2 anti- k_{\downarrow} R=0.4 jets - **AK**4

More info in poster by K.Al Khoury \rightarrow ATLAS-CONF-2020-006

• Exactly 2 b-tagged AK4 jets

W/Z-Boson Candidate Reconstruction:

- **0-lepton:** Large missing transverse energy (MET)
- **1-lepton:** 1 charged leptons: $I = [e,\mu] + MET$ from neutrino (v)
- **2-lepton:** 2 charged leptons: $II=[ee,\mu\mu] + m_{\mu} \sim m_{\tau}$

Boosted Analysis: $p_T^H > \sim 250 \text{ GeV}$

- 1 anti- k_{+} R = 1.0 jet **AK10**
- \geq 2 matched anti- k_{+} track jets
- 2 leading track jets b-tagged

ATLAS-CONF-2020-007

VH→ bb Results: Resolved

Multivariate Analysis (MVA)

- <u>Obs. (exp.)</u>
- $Z_0 = 4.0$ (4.1) $\sigma \leftarrow$ Evidence for WH production
- $Z_0 = 5.3$ (5.1) σ \leftarrow Observation of ZH prodution
- $Z_0 = 6.7$ (6.7) $\sigma \leftarrow$ Combined WH + ZH observation

Di-jet Mass Analysis (DMA)

 \rightarrow Simultaneous fit of VZ & VH signal strengths ($[\mu_{VZ}, \mu_{VH}]$):

80fb⁻¹: 50%-125% uncertainty on $\sigma^{W/ZH}$ **139fb**⁻¹: 30%-85% uncertainty on $\sigma^{W/ZH}$

 $H \rightarrow bb$: Inclusive ggF high p_{τ}^{H}

HIG-19-003

Inclusive ggF high p^H: Analysis Strategy

HIG-19-003

 \rightarrow Only one new paper for $H \rightarrow \tau \tau$

 \rightarrow ATLAS now published a CP invariance test of BSM using H $\rightarrow \tau\tau$ - counterpart to CMS 2019 publication

UNI FREIBURG

Test of CP Invariance in VBF $H{\rightarrow}\,\tau\tau$

Phys. Lett. B 805 (2020) 135426

Higgs Candidate Reco.:

- $\tau_{lep} \tau_{lep}$ SF: Same flavour leptons
- $\tau_{lep} \tau_{lep}$ **DF**: Different flavour leptons
 - $\tau_{lep} \tau_{had}$: Semi-leptonic τ decays
- $\tau_{had} \tau_{had}$: Hadronic τ decays

Stephen

Jet Reco.:

• Anti- $k_{t} R = 0.4$ jet - **AK4 jet**

Physics Interpretation:

- \rightarrow Effective lagrangian ($\mathcal{L}_{_{\mathrm{eff}}}$) composed of:
 - Standard Model:
 - CP-odd mass dim. Six: \mathcal{L}^{6}_{CP}

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{f_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

L_{SM}

 $\rightarrow \tilde{d} \text{ parameterises strength of CP-violation:}$ $|\mathcal{M}|^2 = |\mathcal{M}_{\rm SM}|^2 + 2\tilde{d} \cdot \operatorname{Re}(\mathcal{M}_{\rm SM}^* \mathcal{M}_{\rm CP-odd}) + \tilde{d}^2 \cdot |\mathcal{M}_{\rm CP-odd}|^2 \checkmark$

Fit Discriminant:

 \rightarrow Utilise matrix element calculated from HAWK [Link]

→ Optimal Observable:

$$O_{\text{opt}} = \frac{2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}})}{\left|\mathcal{M}_{\text{SM}}\right|^2}$$

28/05/20

Test of CP Invariance in VBF H $\rightarrow \tau\tau$: Results

Phys. Lett. B 805 (2020) 135426

 \rightarrow Binned maximum likelihood $\mathcal{L}(\mathbf{x},\mu|\theta)$ as a function of each \widetilde{d} hypothesis

 \rightarrow Unconstrained signal normalisation 'µ' - **shape only analysis**

 \rightarrow Summary of mean <Optimal Obs.> for each channel and combined result:

Channel	(Optimal Observable)
$\tau_{\rm lep} \tau_{\rm lep} {\rm SF}$	-0.54 ± 0.72
$\tau_{\rm lep} \tau_{\rm lep} {\rm DF}$	0.71 ± 0.81
$\tau_{\rm lep} \tau_{\rm had}$	0.74 ± 0.78
$ au_{ m had} au_{ m had}$	-1.13 ± 0.65
Combined	-0.19 ± 0.37

→ *Expected results*: Asimov dataset from Np set to observed CR fit only values *Pre-fit Expected*: Asimov dataset from Np set to SM expectation asimov fit.

 \rightarrow Conditional [μ =1, \tilde{d} = 0] and [μ =0.73, \tilde{d} = 0] asimov fits demonstrate loss of observed sensitivity due to lower than expected event yields

 \rightarrow 68%(95%) CL interval on \tilde{d} set for observed and expected:

Obs. 68% CL: $\tilde{d} \in [-0.090, 0.035]$ **Exp. 68% CL:** $\tilde{d} \in [-0.035, 0.033]$ **Obs. 95% CL:** $\tilde{d} \in [N/A]$ **Exp. 95% CL:** $\tilde{d} \in [-0.21, 0.15]$

Asymmetry in CL due to asymmetric Opt. Obs. \rightarrow See previous slide

Stephen Jiggins

 \tilde{d}

Constraints on anomalous HVV couplings: $H \rightarrow \tau \tau$

PRD 100 (2019) 112002 HIG-18-032

PRD 100 (2019) 112002

 \rightarrow Anomalous HVV couplings in VBF/ggF/VH production

using:

- H $\rightarrow \tau\tau$ **35.9fb**⁻¹ analysis (see PLB 779 (2018) 283)
- $H \rightarrow 4l$ Run 1+2 analyses (see PhysRevD. 99 112003)

 \rightarrow Amplitude for spin-0 Higgs with two spin-1 gauge bosons VV:

$$\begin{split} A(HVV) &\sim \left[a_1^{VV} + \frac{\kappa_1^{VV} q_1^2 + \kappa_2^{VV} q_2^2}{(\Lambda_1^{VV})^2} \right] m_{V1}^2 \epsilon_{V1}^* \epsilon_{V2}^* \\ &+ a_2^{VV} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu} \end{split}$$

- Λ_i : BSM scale - a^{VV} , CP-odd interaction $-a^{VV}$, CP-even interaction

 \rightarrow HVV anomalous couplings measured using effective cross-section ratios f_{ai} , and relative phase Φ :

 \rightarrow Measurement of H $\rightarrow \tau\tau$ sensitive to VBF+ggF+VH production modes updated with 77.4fb⁻¹

 \rightarrow Update 1: Multiclass NN used to separate 9-classes - [ggF,VBF] signal + 7 bkg

HIG-18-032

 \rightarrow Update 2: Included a STXS result for ggF and VBF production modes:

17

Conclusions

q

ā

Backup

ATLAS-CONF-2020-006 ATLAS-CONF-2020-007

Background Estimation

- → Resolved: 42 fit regions
 → Boosted: 14 fit regions
- $\rightarrow 3 \text{ signal results quoted:} \\ \rightarrow [\mu_{VH}, \mu_{WH}, \mu_{ZH}]$

20

p^V_T [GeV]

$H \rightarrow bb: VH \rightarrow bb$ Analysis Strategies

ATLAS-CONF-2020-006

ATLAS-CONF-2020-007

0.6 BDT_{vz} output

VH→ bb Resolved Event Categorisation

22

VH \rightarrow **bb Resolved Event Categorisation** – Fit Regions

3-jets

Yield BDT Yield

Yield BDT Yield

Yield

BDT

Yield

BDT

Yield

			Categories						
	Channel	Region	$75 \text{ GeV} < p_T^V < 150 \text{ GeV}$		$150 \text{ GeV} < p_T^V < 250 \text{ GeV}$		$p_{\rm T}^V > 250 {\rm GeV}$		
\rightarrow BDT used as fit discriminant in SR's	Channer	Region	2-jets	3-jets	2-jets	3-jets	2-jets	3-jets	
score		Low- ΔR -CR	-	-	Yields	Yield	Yield	Yield	
	0-lepton	Signal region	-	-	BDT	BDT	BDT	BDT	
\rightarrow CR _{Low/High} used only to constrain normalisation – single bin		High- ΔR -CR	_	-	Yield	Yield	Yield	Yield	
		Low- ΔR -CR	_	_	Yield	Yield	Yield	Yield	
A average nV regions CD single bing provide differential	1-lepton	Signal region	-	-	BDT	BDT	BDT	BDT	
\rightarrow Across p ⁺ _T regions CR single bins provide differential		High- ΔR -CR	-	-	Yield	Yield	Yield	Yield	
shape information		Low- ΔR -CR	Yield	Yield	Yield	Yield	Yield	Yield	

2-lepton

Signal region

High- ΔR -CR

BDT

Yield

BDT

Yield

BDT

Yield

BDT

Yield

VH → bb Resolved Di-jet Mass Analysis

- → Identical fit regions as MVA following new 2D $[p^{v}_{T}, \Delta R(b,b)]$ plane definitions:
- \rightarrow Binned profile likelihood fit $\mathcal{L}(\bm{x},\bm{\mu}|\bm{\theta})$ with **total** of **42 fit regions**

BURG

N H

VH→ bb Results: Resolved

Di-jet Mass Analysis (DMA)

VH→ bb Resolved: Systematics

→ Statistical and systematics approximately the same!
 → Modelling/signal MC uncertainties and b-tagging dominant!

	Source of un	certainty	VII	σ_{μ}	711
			VП	WH	ΖП
	Total		0.177	0.260	0.240
	Statistical		0.115	0.182	0.171
	Systematic		0.134	0.186	0.168
	Statistical un	certainties			
	Data statistic	al	0.108	0.171	0.157
	$t\bar{t} e\mu$ control	region	0.014	0.003	0.026
	Floating nor	malisations	0.034	0.061	0.045
	Experimenta	l uncertainties			
	Jets		0.043	0.050	0.057
	$E_{\rm T}^{\rm miss}$		0.015	0.045	0.013
	Leptons		0.004	0.015	0.005
		b-jets	0.045	0.025	0.064
	b-tagging	c-jets	0.035	0.068	0.010
		light-flavour jets	0.009	0.004	0.014
	Pile-up		0.003	0.002	0.007
	Luminosity		0.016	0.016	0.016
	Theoretical a	and modelling uncer	rtainties	-	
	Signal		0.052	0.048	0.072
	6				
	Z + jets		0.032	0.013	0.059
	W + jets		0.040	0.079	0.009
	tī		0.021	0.046	0.029
	Single top qu	ıark	0.019	0.048	0.015
	Diboson		0.033	0.033	0.039
	Multi-jet		0.005	0.017	0.005
Stephe	MC statistica	վ	0.031	0.055	0.038

Stat. ~ Syst uncert.

VH \rightarrow **bb**: Systematics (ZH)

 \rightarrow Special statement: For ZH NLO corrections for gg \rightarrow ZH production that are missing dominant the measurement precision

 \rightarrow Limits the H \rightarrow bb sensitivity to ggF!

Source of up		σ_{μ}			
Source of un	certainty	VH	WH	ZH	
Total		0.177	0.260	0.240	
Statistical		0.115	0.182	0.171	
Systematic		0.134	0.186	0.168	
Statistical un	certainties				
Data statistic	al	0.108	0.171	0.157	
$t\bar{t} \ e\mu$ control	region	0.014	0.003	0.026	
Floating nor	nalisations	0.034	0.061	0.045	
Experimenta	l uncertainties				
Jets		0.043	0.050	0.057	
$E_{\rm T}^{\rm miss}$		0.015	0.045	0.013	
Leptons		0.004	0.005		
	<i>b</i> -jets	0.045	0.025	0.064	
b-tagging	c-jets	0.035	0.068	0.010	
	light-flavour jets	0.009	0.004	0.014	
Pile-up		0.003	0.002	0.007	
Luminosity		0.016	0.016	0.016	
Theoretical a	nd modelling uncer	rtainties			
Signal		0.052	0.048	0.072	
Z + jets		0.032	0.013	0.059	
W + jets		0.040	0.079	0.009	
tī		0.021	0.046	0.029	
Single top qu	ıark	0.019	0.048	0.015	
Diboson		0.033	0.033	0.039	
Multi-jet		0.005	0.017	0.005	
MC statistica	d	0.031	0.055	0.038	

Stephe ________

VHbb Resolved: Mutlivariate Parameterisation of MC Systematics

Fit Discriminant Space:

Re-weight using MVA calibrated density ratio estimator and pass to analysis BDT

Sherpa 2.2.1

150

/Sherpa 2.2.1

200

250

300 m_{bb} [GeV]

1.3

1.2

1.1⊟

0.9

0.8^t

σ^{Stat.} Sherpa 2.2.

100

50

Weighted

1.16 \rightarrow

VHbb Resolved: STXS Bin Signal Division

- \rightarrow Expected signal yields per:
 - Reconstruction category (y-axis)
 - Truth category (x-axis)

- \rightarrow Fraction of expected signal yields per:
 - Reconstruction category (y-axis)
 - Truth category (x-axis)

S

Normalised according to the total fiducial phase space yield.

VHbb Resolved: STXS Bin Correlations

→ Observed correlations between reduced stage 1.2 STXS scheme for 5-POI scheme - Statistical & Systematics included

→ Expansion of STXS scheme to include an exclusive 150 GeV < p_V^T (truth) < 250 GeV bin reduces cross-correlation

Stephen Jiggins

VHbb Resolved: EFT

 \rightarrow Effective lagrangian approach using the Warsaw basis:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(D)}}{\Lambda^{D-4}} O_i^{(D)},$$

- \rightarrow Only dimension D=6 operators are considered:
 - \rightarrow D=5 violate lepton/baryon number
 - \rightarrow D=7+ suppressed by further powers of 1/A beyond Λ^4

 \rightarrow Linear (interference) and quadratic (D=6)² parameterised in each STXS bin:

32

VH→ bb Boosted Event Categorisation – Fit Regions

VHbb Boosted: STXS Bin Signal Division

VHbb Boosted: STXS Bin Correlations

→ Observed correlations between reduced stage 1.2 STXS scheme for 4-POI scheme - Statistical & Systematics included

VHbb Boosted: EFT

ATLAS Preliminary

-68% CL ---95% CL

Linear (obs.)

Best-fit (obs.)

 $c_{H_{II}}^{(3)}$ [× 10.0]

Linear + quadratic (obs.)

37

√s = 13 TeV, 139 fb⁻¹ Boosted VH, $H \rightarrow b\overline{b}$

 $\Lambda = 1 \text{ TeV}$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(D)}}{\Lambda^{D-4}} O_i^{(D)},$$

 \rightarrow D=5 violate lepton/baryon number

 \rightarrow D=7+ suppressed by further powers of 1/ Λ beyond Λ^4

\rightarrow VHbb resolved: Stage 1.2 STXS scheme merged down to 5/4 bins

Measurement region	SM p	ction	Result			Stat. unc.		Syst. unc. [fb]						
$(y_H < 2.5, H \rightarrow b\bar{b})$	[fb]			[fb]			[fb]		Th. sig.		Th. bkg.		Exp.	
5-POI scheme														
$W \rightarrow \ell \nu$; 150 < $p_{\rm T}^V$ < 250 GeV	24.0	±	1.1	20	±	25	±	17	±	2	±	13	±	9
$W \rightarrow \ell \nu; p_{\rm T}^V > 250 { m ~GeV}$	7.1	±	0.3	8.8	±	5.2	±	4.4	±	0.5	±	2.5	±	0.9
$Z \rightarrow \ell \ell, \nu \nu; 75 < p_{\rm T}^V < 150 \; {\rm GeV}$	50.6	±	4.1	81	±	45	±	35	±	10	±	21	±	19
$Z \rightarrow \ell\ell, \nu\nu; 150 < p_{\rm T}^V < 250 \; {\rm GeV}$	18.8	±	2.4	14	±	13	±	11	±	1	±	6	±	3
$Z \rightarrow \ell \ell, \nu \nu; p_{\rm T}^V > 250 \text{ GeV}$	4.9	±	0.5	8.5	±	4.0	±	3.7	±	0.8	±	1.2	±	0.6
3-POI scheme														
$W \rightarrow \ell \nu; p_{\rm T}^V > 150 { m ~GeV}$	31.1	±	1.4	35	±	14	±	9	±	2	±	9	±	4
$Z \rightarrow \ell \ell, \nu \nu; 75 < p_{\rm T}^V < 150 \; {\rm GeV}$	50.6	±	4.1	81	±	45	±	35	±	10	±	21	±	19
$Z \rightarrow \ell \ell, \nu \nu; p_{\rm T}^V > 150 {\rm GeV}$	23.7	±	3.0	28.4	±	8.1	±	6.4	±	2.4	±	3.6	±	2.3

Measurement region	SM prediction			Result			Stat	. unc.	Syst. unc.		
$(y_H < 2.5, H \rightarrow b\bar{b})$	[fb]			[fb]			[fb]		[fb]		
$W_{\rm eff} = 0.00 {\rm eff} = 0.000 {\rm eff} =$	5.02		0.26	2.2	+	4.8	+	3.6	+	3.2	
$W \to \ell \nu; p_T^r \in [250, 400] \text{ GeV}$	5.83	±	0.26	3.3	_	4.6	_	3.4	-	3.0	
$W \rightarrow h w = r W \in [400 \text{ col} C \circ V]$	1.25	±	0.06	2.1	+	1.2	+	1.0	+	0.6	
$W \rightarrow UV, p_T \in [400, \infty] \text{ GeV}$				2.1	_	1.1	_	0.9	-	0.5	
$Z \rightarrow \ell \ell \mu \mu \mu \mu Z \in [250, 400] \text{ GeV}$	4.12		0.45	1.4	+	3.1	+	2.4	+	1.9	
$Z \rightarrow ii, vv, p_T \in [230, 400]$ GeV		Ŧ		1.4	-	2.9	-	2.3	-	1.7	
$Z \rightarrow \ell \ell $ and $\pi Z \in [400 \text{ col} (Ca)]$	0.72	±	0.05	0.2	+	0.7	+	0.6	+	0.3	
$\Sigma \rightarrow \iota\iota, \nu\nu, p_T \in [400, \infty] \text{ GeV}$	0.72			0.2	-	0.6	_	0.5	-	0.3	

Stephen Jiggins

Ultra high p^H_T environment!

Stephen Jiggins

m_{SD} (GeV)

pp—>bb+X

QCD:

X+H+

-dd

ggF:

Inclusive ggF high p_T^H: Analysis Strategy

HIG-19-003

H \rightarrow **bb**: Inclusive ggF high $p_{\tau}^{H} - N^{DDT,1}$

 \rightarrow Ratio of 3-point/2-point energy correlation co-efficient: $N_2^1 = \frac{2^{e_3}}{(1e_2)^2}$.

 $\rightarrow \mathbf{X}_{(26\%)}$ determined as function of (ρ, p_T) :

H \rightarrow **bb**: Inclusive ggF high $p^{H}_{T} - \epsilon^{QCD}$ from QCD MC

 \rightarrow Double b-tagger is designed to be jet mass independent – loss function contains penalty term for differences in jet mass distribution between pass/fail regions.

 \rightarrow Some residual difference exists therefore 2D Bernstein polynominal fitted, $\epsilon^{QCD}(\rho, p_T)$, that characterises QCD simulated pass-fail ratio of events.

- \rightarrow Double b-tagger performance differs in MC and data.
- \rightarrow Fit simulation to data to extract residual differences Bernstein polynomial as a function of (ρ , p_T):

 $\left(\sum_{k,\ell}a_{k\ell}\rho_{ij}^kp_{\mathrm{T}_j^\ell}\right)$

$H{\longrightarrow}\,\tau\tau$

 $H{\longrightarrow}\,\tau\tau{:}$

Test of CP Invariance in VBF $H{\rightarrow}\,\tau\tau$

\rightarrow Uses same dataset as $H \rightarrow \tau \tau$ observation paper:

Source: Phys Rev. D. 99.072001 (2019)

UNI FREIBURG

Physics Interpretation:

- \rightarrow Effective lagrangian (\mathcal{L}_{eff}) composed of:
 - Standard Model:
 - CP-odd mass dim. Six: \mathcal{L}_{CP}^{6}

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{f_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

 \mathcal{L}_{SM}

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \tilde{g}_{HAA} H \widetilde{A}_{\mu\nu} A^{\mu\nu} + \tilde{g}_{HAZ} H \widetilde{A}_{\mu\nu} Z^{\mu\nu} + g_{HZZ} H \widetilde{Z}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HWW} H \widetilde{W}^+_{\mu\nu} W^{-,\mu\nu} \checkmark$$

 \rightarrow CP-violation of VBF production parameterised by:

$$\begin{split} \tilde{g}_{HAA} &= \frac{g}{2m_W} (\tilde{d} \sin^2 \theta_W + \tilde{d}_B \cos^2 \theta_W) \qquad \tilde{g}_{HAZ} = \frac{g}{2m_W} \sin 2\theta_W (\tilde{d} - \tilde{d}_B) \\ \tilde{g}_{HZZ} &= \frac{g}{2m_W} (\tilde{d} \cos^2 \theta_W + \tilde{d}_B \sin^2 \theta_W) \qquad \tilde{g}_{HWW} = \frac{g}{m_W} \tilde{d}, \end{split}$$

 \rightarrow Under arbitrary choice that $\tilde{d} = \tilde{d}_B$, one can parameterise the strength of CP-violation via:

$$|\mathcal{M}|^2 = |\mathcal{M}_{\rm SM}|^2 + \tilde{d} \cdot 2\operatorname{Re}(\mathcal{M}_{\rm SM}^*\mathcal{M}_{\rm CP-odd}) + \tilde{d}^2 \cdot |\mathcal{M}_{\rm CP-odd}|^2$$

 \rightarrow The choice $\tilde{d} = \tilde{d}_B$, whilst arbitrary is motivated as it yields $\kappa_W = \kappa_Z$ as and VBF HWW vs HZZ not separable:

$$\tilde{d} = -\hat{\kappa}_W = -(\tilde{\kappa}_W/\kappa_{\rm SM})\tan\alpha$$

 \rightarrow This is the same assumption used in the H \rightarrow WW and H \rightarrow ZZ combination.

 \rightarrow VBF sensitive to CP violation due to momentum dependence of CP-violating terms:

$$T^{\mu\nu}(p_1, p_2) = \sum_{V=W,Z} \frac{2m_V^2}{v} g^{\mu\nu} + \sum_{V=W,Z,\gamma} \tilde{d} \frac{2g}{m_W} \epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}$$
$$H \rightarrow VV \text{ tensor structure}$$
$$\to H \rightarrow VV \text{ limited by } m_{-} = (p_{-} + p_{-})^2, \text{ but VBE production is}$$

 \rightarrow H \rightarrow VV limited by m_H = (p₁ + p₂)², but VBFproduction is not.

VBF H \rightarrow **\tau\tau**: Analysis Strategy

Phys. Lett. B 805 (2020) 135426

$\underbrace{\text{Phys. Lett. B 805}}_{\text{EXPERIMENT}} \text{ Test of CP Invariance in VBF H} \rightarrow \tau\tau: \text{ Fit discriminants} \quad \underset{(2020)}{\text{Phys. Lett. B 805}} \quad \underset{(2020)}{\text{Phys. Phys. Lett. B 805}} \quad \underset{(2020)}{\text{Phys. Phys. Phys.$

 $\underbrace{\text{Phys. Lett. B 805}}_{\text{EXPERIMENT}} \text{ Test of CP Invariance in VBF H} \rightarrow \tau\tau: \text{ Fit discriminants} \quad \underset{(2020)}{\text{Phys. Lett. B 805}} \quad \underset{(2020)}{\text{Phys. Phys. Lett. B 805}} \quad \underset{(2020)}{\text{Phys. Phys. Phys.$

$H \rightarrow \tau \tau$ using 77.4fb⁻¹

HIG-18-032

1.5

2

2.5

Best fit $\mu_{\rm X} = \sigma_{\rm X}/\sigma_{\rm SM}$

з

0.5

0

PRD 100 (2019) 112002

+ **CATLAS**

Constraints HVV EFT couplings: $H \rightarrow \tau \tau$

 \rightarrow **CMS**: parameterisation of anomalous HVV couplings via:

$$A(HVV) \sim \left[a_1^{VV} + \frac{\kappa_1^{VV} q_1^2 + \kappa_2^{VV} q_2^2}{(\Lambda_1^{VV})^2} \right] m_{V1}^2 \epsilon_{V1}^* \epsilon_{V2}^* - \Lambda_1: \text{BSM scale} \\ + a_2^{VV} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu} - a_2^{VV} c_2^* c_2^$$

 \rightarrow HVV anomalous couplings measured using effective cross-section ratios f_{ai} , and relative phase Φ :

 $\phi_{a_i} = \arg\left[\frac{a_i}{a_1}\right] \qquad f_{a_i} = \frac{a_i^2 \sigma_i}{\sum a_i^2 \sigma_i}$

to: $\mathcal{L}_{eff} = \mathcal{L}_{SM}$

$$+ \tilde{g}_{HAA} H \tilde{A}_{\mu\nu} A^{\mu\nu} + \tilde{g}_{HAZ} H \tilde{A}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HZZ} H \tilde{Z}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HWW} H \tilde{W}^+_{\mu\nu} W^{-\mu\nu}$$

 \rightarrow **ATLAS**: parameterisation of CP odd terms according

Where:

$$\begin{split} \tilde{g}_{HAA} &= \frac{g}{2m_W} (\tilde{d} \sin^2 \theta_W + \tilde{d}_B \cos^2 \theta_W) \qquad \tilde{g}_{HAZ} = \frac{g}{2m_W} \sin 2\theta_W (\tilde{d} - \tilde{d}_B) \\ \tilde{g}_{HZZ} &= \frac{g}{2m_W} (\tilde{d} \cos^2 \theta_W + \tilde{d}_B \sin^2 \theta_W) \qquad \tilde{g}_{HWW} = \frac{g}{m_W} \tilde{d}, \end{split}$$

 $\rightarrow \text{Assume that } \widetilde{d} = \widetilde{d}_B \text{ as indistinguishable with dataset}$ $|\mathcal{M}|^2 = |\mathcal{M}_{\text{SM}}|^2 + \widetilde{d} \cdot 2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}}) + \widetilde{d}^2 \cdot |\mathcal{M}_{\text{CP-odd}}|^2$

 \rightarrow Transform between the two parameterisations:

$$\widetilde{d} = \cos(\phi_3) \sqrt{\frac{f_3 \sigma_1}{(1 - f_3) \sigma_3}}$$
 and $f_3 = \frac{r_3^2}{1 + r_3^2}$ Where: $r_3^2 = \widetilde{d}^2 \cdot \frac{\sigma_3}{\sigma_1}$, $sgn(\widetilde{d}) = \cos(\phi_3)$
 \rightarrow Comparison of transformed limits performed internally,

regretably can not be shown here today