

Direct and indirect constraints on the Higgs boson self coupling

Stefano Manzoni

on behalf of the ATLAS and CMS collaborations

LHCP 2020

• Given the Higgs scalar potential:

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda_{3}\nu H^{3} + \frac{1}{4}\lambda_{4}H^{4} + O(H^{5})$$

• within the SM the potential depends only on two parameters ν and m_H , fixing m_H and ν we have:

$$\lambda_3 = \lambda_4 = \lambda^{SM} = rac{m_H^2}{2
u^2}$$
 and $\lambda_i = 0$, for $i \ge 5$

• new physics could modify the Higgs potential altering the λ_3 without affecting m_H or ν : e.g. by extending the scalar sector or due to the exchange of new virtual states.

- λ_3 and its variation from SM $\kappa_\lambda = \lambda_3/\lambda_3^{SM}$ can be directly probed by Higgs boson pair production
 - constraints from ATLAS HH at 36 fb⁻¹: $-5.0 < \lambda_3/\lambda_3^{SM} < 12.0$ at 95% C.L. (Exp. $-5.8 < \lambda_3/\lambda_3^{SM} < 12.0$)
 - constraints from CMS HH at 36 fb⁻¹: $-11.8 < \lambda_3/\lambda_3^{SM} < 18.8$ at 95% C.L. (Exp. $-7.1 < \lambda_3/\lambda_3^{SM} < 13.6$)
- \rightarrow There are also processes that are indirectly sensitive to $\lambda_3:$ single-Higgs production mode

(日) (同) (三) (三) (三) (○) (○)

Higgs Self-Coupling constraint from single Higgs analyses

- Single Higgs processes do not depend on trilinear-coupling λ_3 at LO
- $\bullet\,$ Two types of NLO EW corrections that depend on λ_3
 - one universal $O(\lambda_3^2)$ due to Higgs loops

• one linear $O(\lambda_3)$ that is both process and kinematics dependent

• Following λ_3 corrections each production mode cross-section and decay branching ratio varies as a function of $\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$.

$$\mu_{i}(\kappa_{\lambda},\kappa_{i}) = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{SM}}} = Z_{H}^{\text{BSM}}(\kappa_{\lambda}) \left[\kappa_{i}^{2} + \frac{(\kappa_{\lambda}-1)C_{1}^{i}}{K_{\text{EW}}^{i}}\right],$$
$$\mu_{f}(\kappa_{\lambda},\kappa_{f}) = \frac{\text{BR}_{f}^{\text{BSM}}}{\text{BR}_{f}^{\text{SM}}} = \frac{\kappa_{f}^{2} + (\kappa_{\lambda}-1)C_{1}^{f}}{\sum_{j}\text{BR}_{j}^{\text{SM}}\left[\kappa_{j}^{2} + (\kappa_{\lambda}-1)C_{1}^{j}\right]}$$

where κ_i and κ_f are additional coupling modifiers such as κ_F (Higgs to fermions coupling modifier), κ_V (Higgs to W/Z coupling modifier)

- Not only global normalization but also differential distribution are modified, since λ_3 corrections have not trivial dependency on the kinematic of each process
- VH and $t\bar{t}H$ production modes are the most affected ones
- No differential effects are expected from BR correction

Figure: for λ_3 at the SM value

• Interpretation of single Higgs boson analyses using signal strength depending on κ_{λ} :

 $\mu_i^f(\kappa_\lambda) \equiv \mu_i(\kappa_\lambda) \times \mu^f(\kappa_\lambda)$

- CMS considered inclusive
 - production cross-section: $\mu_{ggF}(\kappa_{\lambda}), \mu_{VBF}(\kappa_{\lambda}), \mu_{WH}(\kappa_{\lambda}), \mu_{ZH}(\kappa_{\lambda}), \mu_{t\bar{t}H}(\kappa_{\lambda})$
 - decay rates: $\mu^{\gamma\gamma}(\kappa_{\lambda}), \mu^{ZZ}(\kappa_{\lambda}), \mu^{WW}(\kappa_{\lambda}), \mu^{f\bar{f}}(\kappa_{\lambda})$
- ATLAS in addition used full STXS fiducial cross-sections for VH and VBF production modes in order to include differential information
- Input analyses:

Analysis	L [fb ⁻¹]		
	ATLAS	ĊMS	
$H \rightarrow \gamma \gamma$	70.9	77.4	
$t\bar{t}H ightarrow \gamma\gamma$	19.0	77.4	
$H \rightarrow ZZ^* \rightarrow 4\ell$	79.8	137	
$H \!\! ightarrow W \! W^* \! ightarrow e u \mu u$	36.1	35.9	
$H \rightarrow \tau \tau$	36.1	77.4	
VH, $H \rightarrow \tau \tau$	_	35.9	
VH, $H ightarrow bar{b}$	79.8	77.4	
$tar{t}H,\ H o bar{b}$	36.1	77.4	
ggF, $H ightarrow bar{b}$ (boosted)	_	35.9	
$t\bar{t}H$ multilepton	36.1	77.4	
$H ightarrow \mu \mu$	-	35.9	

三日 のへの

Results

- Results obtained fitting κ_{λ} -only, all other couplings are set to their SM values.
- Strong assumption: BSM only affects κ_{λ}

		$n_{\lambda} - 1\sigma$	κ_{λ} [9570 C.L.]
ATLAS	Observed	$4.0^{+4.3}_{-4.1}$	[-3.2, 11.9]
	Expected	$1.0^{+8.8}_{-4.4}$	[-6.2, 14.4]
CMS	Observed	$6.7^{+4.6}_{-6.6}$	[-3.5, 14.5]
	Expected	$1.0^{+8.3}_{-3.8}$	[-5.1, 13.7]

complementary to the limit from HH 36.1 fb⁻¹ combination:
 ATLAS: -5.0 < κ_λ < 12.1 CMS: -11.8 < κ_λ < 18.8 m s

S. Manzoni (Nikhef)

= 990

• the sensitivity to κ_{λ} is not much degraded when determining κ_{F}

S. Manzoni (Nikhef)

ELE NOR

 $\bullet\,$ Fit using κ_{λ} and κ_{V} parameter and setting $\kappa_{F}=1$

- the sensitivity to κ_{λ} is degraded by 50% when determining κ_{V}
- Fitting $\kappa_{\lambda} \kappa_{V} \kappa_{F}$ or fitting $\kappa_{\lambda} \kappa_{H} = \kappa_{V} = \kappa_{F}$ results in nearly no sensitivity to κ_{λ} .

S. Manzoni (Nikhef)

Higgs Self-Coupling constraint from the combination of single and double Higgs analyses Double Higgs production directly sensitive to Higgs boson self-coupling

- Observed 95% C.L.: $-5.0 < \kappa_{\lambda} < 12.0$
- Expected 95% C.L.: $-5.8 < \kappa_{\lambda} < 12.0$

I= nac

• ATLAS has constrained κ_{λ} combining the information coming from the single Higgs measurements and the double Higgs analyses

Analysis	L [fb ⁻¹]	
$H \rightarrow \gamma \gamma$	79.8	
$H \rightarrow ZZ^* \rightarrow 4\ell$	79.8	
$H \rightarrow WW^* \rightarrow e u \mu u$	36.1	
H ightarrow au au	36.1	
VH, $H ightarrow bar{b}$	79.8	
$tar{t}H,~H ightarrow bar{b}$	36.1	
<i>ttH</i> multilepton	36.1	
HH ightarrow bbbb	36.1	
$HH ightarrow bb \gamma \gamma$	36.1	
HH ightarrow bb au au	36.1	

- Single-Higgs contributions in di-Higgs analysis parameterised as a function of κ_{λ} .
- $t\bar{t}H \rightarrow \gamma\gamma$ contribution excluded because of a large overlap with $HH \rightarrow bb\gamma\gamma$ analysis (up to 50% of the events)
- The remaining categories have a maximum overlap of less than 2%

S. Manzoni (Nikhef)

E SQA

• The global likelihood shape depends on combining the contributions from the different production and decay modes

- The expected (on Asimov) dominant contributions to the combination arises from the combined *HH* channels, from ggF single Higgs production mode, and $t\bar{t}H$ for the negative values of κ_{λ} .
- The double Higgs analyses set the strongest constraint on κ_{λ} .
- H → γγ and H→ ZZ* → 4ℓ are almost comparable with di-higgs analyses (also because of larger integrated luminosity)

S. Manzoni (Nikhef)

• Results obtained fitting κ_{λ} -only, all other couplings are set to their SM values.

 $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8} = 4.6^{+2.9}_{-3.5} \, (\text{stat.}) \, {}^{+1.2}_{-1.2} \, (\text{exp.}) \, {}^{+0.7}_{-0.5} \, (\text{sig. th.}) \, {}^{+0.6}_{-1.0} \, (\text{bkg. th.})$

- 95% C.L. : $-2.3 < \kappa_{\lambda} < 10.3$ (observed), $-5.1 < \kappa_{\lambda} < 11.2$ (expected)
- The combination significantly improves the constraining power on κ_{λ} .

ELE NOR

A B F A B F

- Fit simultaneously several coupling modifiers: κ_{λ} , κ_{W} , κ_{Z} , κ_{ℓ} , κ_{b} , κ_{t}
- Test of BSM models that can modify at the same time κ_λ and other Higgs boson couplings.

$\kappa_W^{+1\sigma}_{-1\sigma}$	$\kappa_{Z}^{+1\sigma}_{-1\sigma}$	$\kappa_t {}^{+1\sigma}_{-1\sigma}$	$\kappa_{b}{}^{+1\sigma}_{-1\sigma}$	$\kappa_{lep} {}^{+1\sigma}_{-1\sigma}$	$\kappa_{\lambda}{}^{+1\sigma}_{-1\sigma}$	κ_{λ} [95% C.L.]
1	1	1	1	1	$4.6^{+3.2}_{-3.8}$	[-2.3, 10.3]
1	T	1	I	I	$1.0^{+7.3}_{-3.8}$	[-5.1, 11.2]
$1.03\substack{+0.08\\-0.08}$	$1.10\substack{+0.09\\-0.09}$	$1.00\substack{+0.12\\-0.11}$	$1.03\substack{+0.20\\-0.18}$	$1.06\substack{+0.16\\-0.16}$	$5.5^{+3.5}_{-5.2}$	[-3.7, 11.5]
$1.00\substack{+0.08\\-0.08}$	$1.00\substack{+0.08\\-0.08}$	$1.00\substack{+0.12 \\ -0.12}$	$1.00\substack{+0.21 \\ -0.19}$	$1.00\substack{+0.16 \\ -0.15}$	$1.0^{+7.6}_{-4.5}$	[-6.2, 11.6]

• Substantial constraints on κ_{λ} even in this more generic model.

S. Manzoni (Nikhef)

- Single-Higgs measurements can be used to constraint κ_{λ}
- $\bullet\,$ First constraint on κ_{λ} from indirect measurement has been provided by the ATLAS and CMS
 - 95% C.L.: $-3.2 < \kappa_{\lambda} < 11.9$ (ATLAS) and $-3.5 < \kappa_{\lambda} < 14.5$ (CMS)
 - best-fit: $\kappa_{\lambda} = 4.0^{+4.3}_{-4.1}$ (ATLAS) and $\kappa_{\lambda} = 6.7^{+4.6}_{-6.6}$ (CMS)
- → comparable with *HH* results at $L = 36 \text{ fb}^{-1}$: $-5.0 < \kappa_{\lambda} < 12.0$ (ATLAS) and $-11.8 < \kappa_{\lambda} < 18.8$ (CMS)
 - ATLAS collaboration has provided a more stringent constraint combining single and double-higgs measurements:
 - 95% C.L.: $-2.3 < \kappa_{\lambda} < 10.3$
 - best-fit: $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8}$
 - Combining the direct and indirect measurement allows to test generic model where several parameters are floated together with κ_λ
 - fitting κ_{λ} , κ_{W} , κ_{Z} , κ_{ℓ} , κ_{b} , κ_{t} 95% C.L.: $-3.7 < \kappa_{\lambda} < 11.5$
 - substantial constraints on κ_λ even in this more generic model.

ELE DQA

(日)

Thank you for your attention!

I am available for additional discussion, Zoom meeting following this session:

- ID: 923 4908 0316 https://cern.zoom.us/j/92349080316
- Password: same as for this session

Bonus and back-up slides

Image: A mathematical states of the state

• The *HH* cross section depends both on κ_t and $\kappa_{\lambda} \rightarrow$ cannot constrain both parameters simultaneously

- the combination with the single–Higgs measurements allows, even for κ_{λ} values deviating from the SM prediction, the determination of κ_t to a sufficient precision, restoring the *HH* sensitivity to κ_{λ}
- the constraining power on κ_{λ} of the combined single and double-Higgs analyses is only slightly worse than in the κ_{λ} -only model

ELE NOR

(a) < (a)

- The improvement of the indirect κ_λ constraint at HL-LH is limited by systematic uncertainties
- Larger gain in sensitivity for *HH* analyses that are currently limited by statistic uncertainties
- κ_{λ} measurement from single-Higgs is still very important to resolve the second minimum in *HH* likelihood shape

ELE NOR

- Constraint on κ_{λ} from $t\bar{t}H + tH$, $H \rightarrow \gamma\gamma$ differential cross section measurements at the HL-LHC with the CMS Phase-2 detector
- 95% C.L.: $-4.1 < \kappa_{\lambda} < 14.1$

STXS region		VBF	WH	ZH
		0	$C_{1}^{i} \times 100$	
	VBF -cuts $+ p_T^{j1} < 200 \text{ GeV}, \le 2j$	0.63	0.91	1.07
	VBF -cuts $+ p_T^{j1} < 200 \text{ GeV}, \ge 3j$	0.61	0.85	1.04
VBF + V(had)H	VH -cuts + $p_T^{j1} < 200 \text{ GeV}$	0.64	0.89	1.10
	no VBF/VH -cuts, $p_T^{j1} < 200 \text{ GeV}$	0.65	1.13	1.28
	$p_T^{j1} > 200 \text{ GeV}$	0.39	0.23	0.28
	$p_T^V < 150 \text{ GeV}$		1.15	
The second se	$150 < p_T^V < 250 \text{ GeV}, 0j$		0.18	
$qq \rightarrow H \ell \nu$	$150 < p_T^V < 250 \text{ GeV}, \ge 1j$		0.33	
	$p_T^V > 250 \text{ GeV}$		0	
aa \ H//	$p_T^V < 150 \text{ GeV}$			1.33
$qq \rightarrow \pi \ell \ell$	$150 < p_T^V < 250 \text{ GeV}, 0j$			0.20
$qq \to H \nu \nu$	$150 < p_T^V < 250 \text{ GeV}, \ge 1j$			0.39
	$p_T^V > 250 \text{ GeV}$			0

Granularity	$\kappa_{\lambda} {}^{+1\sigma}_{-1\sigma}$	κ_{λ} [95% C.L.]
STXS	$\begin{array}{c} 4.0^{+4.3}_{-4.1} \\ 1.0^{+8.8}_{-4.4} \end{array}$	[-3.2, 11.9] [-6.2, 14.4]
inclusive	$\begin{array}{r} 4.6^{+4.3}_{-4.2} \\ 1.0^{+9.5}_{-4.3} \end{array}$	[-2.9, 12.5] [-6.1, 15.0]

ATLAS √s = 13 TeV, 3 m _H = 125.09 p _{SM} = 89% i→ Total Syst.	36.1 - 79.8 fb ⁻¹ GeV, ∣y _µ < 2.5 Stat.	B ₁₁ /B ₂₂ . B _{bb} /B ₂₂ . B _{WW} ./B ₂₂ . B ₁₁ /B ₂₂ .		0.86 0.63 0.86 0.87	Total Stat. +0.14 +0.12 -0.12 (-0.11, +0.35 +0.22 -0.28 (-0.18) +0.18 +0.13 -0.18 (-0.11, +0.29 +0.22 -0.24 (-0.19) 2.5 3 3	Syst. +0.07 -0.06) +0.27 -0.22) +0.12 -0.11 +0.19 -0.14) 5 4
	0-jet	þ		1.29	Total Stat. +0.18 (+0.16 -0.17 (-0.15,	Syst. +0.09 -0.08
	1-jet, $p_T^H < 60 \text{ GeV}$			0.57	+0.43 (+0.37 -0.41 (-0.35, +0.38 ,+0.33	+0.23 -0.22 +0.18
$gg \rightarrow H \times B_{ZZ^*}$	1-jet, $60 \le p_T^{-1} < 12$ 1-jet, $120 \le p_T^{H} < 2$	00 GeV 🖶	•	0.87	-0.34 (-0.31, +0.81 (+0.71	-0.15) +0.39
	≥ 2-jet, p ^H ₇ < 200 G	ieV		1.11	+0.56 +0.46 -0.51 (-0.44, +0.84 ,+0.73	-0.30 +0.32 -0.26 +0.43
	2 1-jei, p ₇ 2 200 G	ev E	•••	2.05	-0.72 (-0.64,	-0.32)
	VBF topo + Rest	•	e	1.57	+0.45 -0.38 (+0.36 -0.32,	+0.27 -0.21)
$qq \rightarrow Hqq \times B_{ZZ^*}$	VH topo			-0.12	+1.35 (+1.31 -1.13 (-1.11 +1.51 ,+1.34	+0.32 -0.24 +0.69
	μ _τ - 200 000 η			-0.95	-1.48 (-1.29,	-0.72)
qq→HIv × B ₋₁₇ ,	$p_{_{T}}^{_V}$ < 250 GeV	Θ		2.28	+1.24 (+1.02 -1.01 (-0.85	+0.71 -0.55)
	$p_{\gamma}^{V} \ge 250 \text{ GeV}$	1		1.91	+2.32 (+1.44 -1.19 (-1.00	+1.81 -0.66)
	p_{γ}^{V} < 150 GeV	-	H	0.85	+1.26 (+1.01 -1.57 (-0.98,	+0.76
$gg/qq \rightarrow HII \times B_{ZZ}$. 150 ≤ p ^V _T < 250 Ge	eV H	н	0.86	+1.29 (+1.02 -1.13 (-0.90, +3.03 +1.87	+0.79 -0.70
	p ₇ ≥ 250 GeV	f		H 2.92	-1.50 (-1.33,	-0.71)
$(t\bar{t}H + tH) \times B_{ZZ}$				1.44	+0.39 -0.33 (+0.30 -0.27,	+0.24 -0.19
		i li				

・ロト ・回ト ・ヨト ・

28th May 2020 23 / 18

三日 のへの

• It is possible to use normalization modifiers

 $\mu_i^f(\kappa_\lambda) \equiv \mu_i(\kappa_\lambda) \times \mu^f(\kappa_\lambda)$

• $\mu_i(\kappa_\lambda)$:

$$\mu_i(\kappa_{\lambda},\kappa_i) = \frac{\sigma^{\rm BSM}}{\sigma^{\rm SM}} = Z_{H}^{\rm BSM}(\kappa_{\lambda}) \left[\kappa_i^2 + \frac{(\kappa_{\lambda}-1)C_1^i}{K_{\rm EW}^i}\right],$$

where $\kappa_i = \kappa_{\rm F}, \kappa_{\rm V}$ and $Z_H^{\rm BSM}(\kappa_{\lambda})$ is defined as:

$$Z_H^{\mathrm{BSM}}\left(\kappa_\lambda
ight) = rac{1}{1-(\kappa_\lambda^2-1)\delta Z_H} \quad \mathrm{with} \quad \delta Z_H = -1.536 imes 10^{-3}\,,$$

- where term of the type $k_i^2 \kappa_\lambda$ are neglected and terms like $k_i^2 \kappa_\lambda^2$ are accounted by the $Z_H^{\text{BSM}} k_i^2$ term.
- $\mu_f(\kappa_{\lambda})$:

$$\mu_f(\kappa_{\lambda},\kappa_f) = \frac{\mathrm{BR}_f^{\mathrm{BSM}}}{\mathrm{BR}_f^{\mathrm{SM}}} = \frac{\kappa_f^2 + (\kappa_{\lambda} - 1)C_1^f}{\sum_j \mathrm{BR}_j^{\mathrm{SM}} \left[\kappa_j^2 + (\kappa_{\lambda} - 1)C_1^j\right]}$$

• Considering inclusively the Higgs boson production modes and decay channels:

	production mode	ggF	VBF	ZH	WH	tŦΗ	
	$C_1^i imes 100$	0.66	0.63	1.19	1.03	3.52	
	${\cal K}^i_{ m EW}$	1.049	0.932	0.947	0.93	1.014	
	κ_i^2	κ_F^2	κ_V^2	κ_V^2	κ_V^2	κ_F^2	
decay mode	$H ightarrow \gamma \gamma$		$H \rightarrow V$	VW*	$H ightarrow ZZ^*$	$H ightarrow bar{b}$	H ightarrow au au
$C_{f 1}^f imes 100$	0.49		0.7	3	0.82	0	0
κ_f^2	$1.59\kappa_V^2 + 0.07\kappa_F^2 - 0$	$.67\kappa_V\kappa_F$	κ_V^2	,	κ_V^2	κ_F^2	κ_F^2

- The SM $\sigma_{\rm ggF}(pp \to HH)$ accounts for more than 90% of the Higgs boson pair production cross-section
- It proceeds via two amplitudes: the first (A₁) represented by the top-box diagrams and the second (A₂) represented by the top-triangle diagram.

• A_1 proportional to y_t^2 and A_2 to the product of y_t and λ_3 . The BSM *HH* amplitude can then be written as:

$$\mathcal{A}(\kappa_t,\kappa_\lambda)=\kappa_t^2\mathcal{A}_1+\kappa_t\kappa_\lambda\mathcal{A}_2.$$

• omitting the integral on the final phase space and on the PDFs for simplicity, the ggF double-Higgs cross section $\sigma_{ggF}(pp \rightarrow HH)$ can be expressed as:

$$\sigma_{
m ggF}(pp
ightarrow HH) \sim \kappa_t^4 \left[\left| A_1
ight|^2 + 2 rac{\kappa_\lambda}{\kappa_t} \Re A_1^* A_2 + \left(rac{\kappa_\lambda}{\kappa_t}
ight)^2 \left| A_2
ight|^2
ight]$$