

J. Langford

Higgs combination

LHCP 29.05.20 0/14

• Higgs boson is the only fundamental scalar particle (spin 0) in the SM

- Run 2: focus shifted towards precision measurements of H couplings
 - unique tool to scrutinize predictions of SM

• Higgs boson is the only fundamental scalar particle (spin 0) in the SM

- Run 2: focus shifted towards precision measurements of H couplings
 - unique tool to scrutinize predictions of SM

- Higgs boson is the only fundamental scalar particle (spin 0) in the SM
 - Gauge boson interactions: H-V couplings • Yukawa interactions: H-f couplings $\begin{array}{c} & & & \\ &$

- Run 2: focus shifted towards precision measurements of H couplings
 - unique tool to scrutinize predictions of SM

• Higgs boson is the only fundamental scalar particle (spin 0) in the SM

• Gauge boson interactions: H-V couplings

• Yukawa interactions: H-f couplings

• Higgs potential: self couplings

- Run 2: focus shifted towards precision measurements of H couplings
 - unique tool to scrutinize predictions of SM

Run 2 combinations

- Wealth of data allows for unprecedented levels of precision!
 - ► tighter constraints on BSM models which distort H couplings
- Combinations across decay channels provides ultimate sensitivity
 - ► both collaborations completing full Run II analyses in individual channels
- This talk: focus on latest intermediate combinations from CMS & ATLAS:
 - ▶ 🖉 35.9–137 fb⁻¹ (Jan 2020): <u>CMS-PAS-HIG-19-005</u>
 - ► **XATLAS** 24.5–79.8 fb⁻¹ (Sept 2019): Phys. Rev. D 101, 012002

Input ana	lys	ses	,	8 8 8 8 8 8 0000000		≻	q v v	and	H	q		>~~~~	v www.c	H	2000 8 100000	100000	T H
					CMS									(PERI	AS		
	Lumi (fbinv) ggH	VBF V	'H ttH		R	efs		Lumi (fbinv)	ggH	VBF	VH	ttH		I	Refs	
$H \rightarrow \gamma \gamma$	77	\checkmark	\checkmark	~	[<u>CN</u> [<u>CN</u>	<u>/IS-PAS-</u> /IS-PAS-	HIG-18-029] HIG-18-018]		80	\checkmark	\checkmark	\checkmark	\checkmark	<u>[A</u>]	LAS-CO	ONF-201	<u>.8-028]</u>
$H{\rightarrow}ZZ^* \rightarrow 4\ell$	137	\checkmark	\checkmark	/	[<u>CN</u>	/IS-PAS-	HIG-19-001]		80	\checkmark	\checkmark	\checkmark	\checkmark	[A]	LAS-CO	DNF-201	.8-018]
H→WW	36	\checkmark	\checkmark	/	[Phys.	Lett. B	791 (2019) 9	6]	36	\checkmark	\checkmark			[Phys	Lett. E	789 (2	019) 508]
H→bb	77 77 36	boost	~	~	[Phys. Rev [CM [Phys. Rev	. Lett. 1 MS-PAS- . Lett. 1	.21, 121801 (2 HIG-18-030] .20, 071802 (2	2018)] 2018)]	80 36 31		~		~	[[Phys. [Phys.	IHEP 05 Rev. D Rev. D	(2019) 97, 0720 98, 0520	<u>141]</u>)16 (2018)])03 (2018)]
$H \rightarrow \tau \tau$	77 36	\checkmark	< , ,	/	ור] [ח]	<u>/IS-PAS-</u> HEP 06 (HIG-18-032] (2019) 093]		77	\checkmark	\checkmark	,		[Phys.	Rev. D	99, 0720	01 (2019)]
$\frac{ttH \rightarrow multilepton}{(\tau \tau, \mathit{WW}, \mathit{ZZ})}$	77			\checkmark	[<u>CN</u>	/IS-PAS-	HIG-18-019]		77				\checkmark	[Phys.	Rev. D	97, 0720	03 (2018)]
$H \rightarrow \mu \mu$	36	\checkmark	\checkmark		[Phys. Rev	. Lett. 1	22, 021801 (2	2019)]	80	\checkmark	\checkmark			[<u>A</u>]	LAS-CO	DNF-201	.8-026]
						Н	\rightarrow invisibl	e	24-3()	\checkmark	\checkmark		[Phys. Re	v. Lett.	122, 23	1801 (2019)
(*) Not included	in al	l resi	ults			Offs	hell H→Z	Z*	36	For a	consti	aint	on F _H	[Phys	Lett. E	786 (2	018) 223]
(*) Some inputs	have	now	been	n supe	erseded v	vith fu	III Run 2 a	analy	ses								

J. Langford

Higgs combination

Signal strengths: $\mu = rate of H boson production / SM prediction$

- \bullet Inclusive: all signal rates scale according to single μ
 - $\mu = 1.02 \pm 0.04$ (th.) ± 0.04 (exp.) ± 0.04 (stat.)
 - Statistic $\mu = 1.11^{+0.05}_{-0.04}$ (sig th.) ± 0.03 (bkg th.) $^{+0.05}_{-0.04}$ (exp.) ± 0.05 (stat.)

- Systematic uncertainties are becoming increasingly important!
 - ▶ adapt measurement framework to reduce theory dependencies...

Cross sections

- Measure cross sections (and their ratios) as opposed to signal strengths
 - dominant theory uncertainties cancel in ratios

- Both CMS & ATLAS report significances $\geq 5\sigma$ for major production modes
- All results consistent with SM predictions
 - more granular fits (μ_i^f) in Back-up

Simplified template cross sections: more detail in Pack-up

- Measure cross sections in increasingly granular "bins"
 - split by production mode + kinematics ($|y_H| < 2.5$)

- Leave no stone/region of space space unturned!
 - ► full Run 2 measurements will adhere to stage 1.2 binning Back-up

Simplified template cross sections

- Insufficient scope to measure all bins of STXS given current datasets
 - ► merge bins with low sensitivity (≥100%) or high (anti)-correlations
 - ► increases model dependence
 - e.g. Setting: 19 parameter fit
 ⇒ also finer granularity fit: Back-up
- At this level of splitting \Rightarrow stat unc. dominate
- Differential information
 - motivates (re)-interpretation
 - + provide full correlation matrix between fitted params: Back-up
- Very much in agreement with SM!

 κ -framework: $\mu \rightarrow \mu(\vec{\kappa})$

- Multiplicative coupling modifiers \Rightarrow SM: positive + equal to unity
- Two possible treatments for loop diagrams:
 - resolved into SM components

g-t

Z-t

W-t

W-t

W-t

Effective

 κ_{α}^2

 κ^2_{\sim}

 κ_{μ}^2

 κ_W^2

 κ^2_{π}

effective vertices

Production $\sigma(ggH)$

 $\sigma(\text{VBF})$

 $\sigma(WH)$

 $\sigma(ttH)$ $\sigma(gb \rightarrow WtH)$

 $\sigma(bbH)$

 $\Gamma^{\mu\mu}$

Гн

 $\sigma(aa/ag \rightarrow ZH)$

 $\sigma(gg \rightarrow ZH)$

 $\sigma(qb \rightarrow tHq)$

Partial decay width rWW

Total width for $B_{BSM} = 0$

J. Langford

κ -framework

- Under assumption of no additional H boson decays beyond SM particles
- Universal modifiers for H couplings to V bosons (κ_V) and fermions (κ_F)
 - resolve loops into SM components
 - $\kappa_V = \kappa_Z = \kappa_W$
 - $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$

- Probe new particles in loops: \Rightarrow ggH, H $\rightarrow \gamma\gamma$:
 - effective coupling strengths: κ_g , κ_γ
 - assume all other $\kappa_j = 1$

 κ -framework Extend to include Higgs boson self coupling (κ_{λ}), see talk by Stefano

• Under assumption of no additional H boson decays beyond SM particles

- κ -framework: beyond SM
- SALLAS additional benchmarks to account for BSM effects in H decay
 - on-shell production...

$$\sigma_i \cdot \mathcal{B}^f = \frac{\sigma_i(\vec{\kappa}) \Gamma^f(\vec{\kappa})}{\Gamma_H(\vec{\kappa}, \mathcal{B}_{\rm inv}, \mathcal{B}_{\rm undet})}$$

- \mathcal{B}_{inv} : H \rightarrow invisible decays (MET)
- ▶ B_{undet}: final states not measured
- $\mathcal{B}_{undet} > 0$, $\kappa_V < 1$:
 - includes results from $\underline{H \rightarrow inv. \ searches}$
 - $\mathcal{B}_{\mathrm{undet}} < 21\%$ & $\mathcal{B}_{\mathrm{inv}} < 30\%$ @ 95% C.L.
- ${\bf 2} \ {\cal B}_{\rm BSM} = {\cal B}_{\rm undet} + {\cal B}_{\rm inv}$
 - ► includes <u>off-shell H→ZZ* meas.</u>
 - ► assumes $\kappa_{\text{on}} = \kappa_{\text{off}}$ $(\sigma_i \cdot \mathcal{B}^f)_{\text{off-shell}} \sim \sigma_i(\kappa_{\text{off}}) \Gamma^f(\kappa_{\text{off}})$
 - $\blacktriangleright~{\cal B}_{\rm BSM} < 49\%$ @ 95% C.L.
 - also fit ratios of coupling modifiers Back-up
 - + 2HDM/hMSSM interpretations Back-up

EFT interpretation of STXS measurements

More info in talk by Nikita

 \bullet Extend $\mathcal{L}_{\rm SM}$ with higher-dim operators:

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{j} f_{j} \mathcal{O}_{j} / \Lambda^{2}$$

- Parametrize σ + BR as function of EFT parameters: $c_j \propto f_j/\Lambda^2$
 - for each bin of STXS
 - beyond κ's: shape effects
 - CMS
 -) 栏 using Higgs Effective Lagrangian
 - SILH basis
 - combination of STXS stage 0, 1 and 1.1
- Neglected acceptance corrections
 - ► sizeable in some channels: e.g. XELLAS H→ 4ℓ: submitted to EPJC
 - future EFT interpretations will account for such effects!
- \Rightarrow SMEFT (Warsaw)

Differential combinations: more detail in talk by Andrea

- $\bullet\,$ Also combination of d σ/dX measurements across major channels
- Fiducial ⇔ model independence
- $\bullet\,$ Shape is sensitive to Yukawa couplings + new physics in loop diagrams!

 - ► Several full Run 2 inputs ready e.g. H→WW...

J. Langford

Looking to the future

- Presented results of Higgs combinations using partial Run 2 data
 - signal strengths, cross sections, STXS, κ -framework, EFT
 - all in agreement with SM predictions
- Full Run 2 combinations will provide never-before-reached levels of precision
 - ▶ both collaborations completing full Run 2 analyses in individual channels
- $\bullet~STXS~+$ differential measurements offer finer granularity
- Interpretation: emphasis shifting κ -framework \Rightarrow EFT
- Ultimate precision: inter-collaboration combination (as in Run 1)

CDR

Back-Up Slides

Statistical procedure for combination

- Methodology used by ATLAS and CMS collaborations
- Profile likelihood ratio: $q(\vec{\alpha})$
 - estimate POIs ($\vec{\alpha}$) and corresponding confidence intervals e.g. μ , κ etc.
 - $\vec{\theta}$: nuisance param (NP) describing experimental + theoretical unc.

$$q(\vec{\alpha}) = -2\ln\left(\frac{L(\vec{\alpha}, \hat{\vec{\theta}}_{\vec{\alpha}})}{L(\hat{\vec{\alpha}}, \hat{\vec{\theta}})}\right)$$

- Confidence intervals: regions where $q(\vec{\alpha})$ below threshold in $F_{\chi^2}^{-1}(1-p)$
 - $F_{\chi^2}^{-1}$: quantile function of χ^2 dist. with *n* d.o.f
 - compatibility with SM measured with *p*-value: $p_{SM} = 1 F_{\chi_a^2}(q(\vec{\alpha}_{SM}))$
- e.g. 1D measurements: 1σ (2σ) intervals $\rightarrow q(\vec{\alpha}) < 1$ $(q(\vec{\alpha}) < 4)$
 - ▶ models with more than one POI: treat other POIs as NP (profiling)
- For expected results: construct likelihood functions w.r.t. Asimov data set
 - using expected (SM) values of the POIs

Global signal strength: uncertainty breakdown

Uncertainty source	$\Delta \mu / \mu$ [%]
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
Background modeling	1.6
Jets, $E_{\rm T}^{\rm miss}$	1.4
Flavor tagging	1.1
Electrons, photons	2.2
Muons	0.2
au-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

CMS: μ_i^f

• Separate signal strengths for all possible production mode $(i \rightarrow H) \times \text{decay}$ channel $(H \rightarrow f)$ combinations

CMS: μ_i^f correlations

• Separate signal strengths for all possible production mode $(i \rightarrow H) \times \text{decay}$ channel $(H \rightarrow f)$ combinations

ATLAS: $\sigma_i \times BR(H \rightarrow f)$

 Separate parameters for all possible production mode (*i*→H) × decay channel (H→ *f*) combinations

ATLAS: $\sigma_i \times BR(H \rightarrow f)$ correlations

 Separate parameters for all possible production mode (*i*→H) × decay channel (H→ *f*) combinations

Simplified template cross sections

- Coherent framework for increasingly granular Higgs measurements
 - ▶ isolate mutually exclusive regions of Higgs phase space (bins)
 - split by production mode + kinematics ($|y_H| < 2.5$)

- Aims: maximise experimental sensitivity whilst systematically reducing theory dependence folded into measurements
 - design bins to have constant theory unc.
 - $\blacktriangleright\ +$ isolate possible BSM physics
 - decouple interpretation from measurement: long-term useful
 - ► coherence permits combinations across decay channels
- Build up more granular picture of the Higgs Boson

STXS stage 1.0

- Measure cross sections in increasingly granular "bins"
 - split by production mode + kinematics ($|y_H| < 2.5$)

STXS stage 1.2

- Evolves in stages: increased granularity to match increase in statistics
- Updates w.r.t stage 1.1: split ttH and ggH $p_T^H > 200 \text{ GeV}...$

STXS: ATLAS merging scheme + sensitivity breakdown

STXS: correlations

• Correlation matrix between fitted parameters: crucial for re-interpretation

STXS: finer granularity

- SALLAS finer granularity fit
- Closer to nominal STXS stage 1.0 definition
- Reduced model dependence!

√s = 13 TeV. 36.1 - 79.8 fb⁻¹ ATLAS m_H = 125.09 GeV, |y₁| < 2.5 1 -6.06 0.20 0.28 0.12 -6.06 0.04 0.10 0.28 0.10 0.20 0.20 0.28 0.08 1 ⊊ 0.8≚ -0.6 -0.4 > 2.int of -0.2-10-0.2 -0.4 -0.6 -0.8 _1 9.00 Ŧ 홍 ä 93-+N qq-+Mq 29/02-+J4I × 8--× 8---×8---×Bn

κ framework

- Correlations matrices indicate how parameters influence eachother
- Positive correlations due to total width: Γ_H

Higgs boson self coupling

- Indirect probe of H self coupling (λ_3) using single H measurements
 - \blacktriangleright via NLO EWK corrections to σ & BR
- Anomolous coupling parametrization: $\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$
 - ▶ described in [JHEP 1612, 080 (2016)] and [Eur. Phys. J. C (2017) 77: 887]
 ▶ Three parameter model: κ_V, κ_F, κ_λ

Assumption	Best fit κ_{λ}	95% CL interval
$\kappa_{\rm rr} = \kappa_{\rm rr} = 1$	$6.7^{+4.6}_{-6.6}$	[-3.5, 14.5]
$n_{\rm F} = n_{\rm V} = 1$	$\binom{+8.3}{-3.8}$	([-5.1, 13.7])
$r_{\rm r} = 1$	$10.3^{+6.1}_{-10.0}$	[-5.5,21.7]
$\kappa_{\rm F} = 1$	$\binom{+8.8}{-5.0}$	([-7.4, 17.2])
$r_{\rm W} = 1$	$6.6^{+4.5}_{-6.1}$	[-3.3, 14.4]
AV - 1	$\binom{+8.2}{-4.0}$	([-5.5, 13.8])

- Lose sensitivity to κ_{λ} if float both κ_{V} and κ_{F} in fit
- Kinematic effects are neglected
 - \blacktriangleright only inclusive shifts in production mode and decay channel rates

H + HH combination

- True scope realised in combining with HH measurements
- XTLAS H (79.8 fb⁻¹) + HH combination (36.1 fb⁻¹): <u>ATLAS-CONF-2019-049</u>
 - H inputs: $\gamma\gamma$, ZZ*, WW, $\tau\tau$ and bb
 - \blacktriangleright HH inputs: bbbb, bb $\tau\tau$, bb $\gamma\gamma$
 - extra caution to remove overlap between input analyses
- $\bullet\,$ Remain sensitive to κ_{λ} including other coupling modifiers to SM particles

Ratios of coupling modifiers

- \bullet Most model-independent coupling strength measurement in κ framework
 - independent of assumptions on total width, Γ_H
- Of particular interest...
 - ► λ_{WZ} : identical coupling strength for W/Z required by tight bounds on SU(2) custodial symmetry + ρ parameter measured @ LEP & Tevatron
 - ► $\lambda_{\gamma Z}$: sensitive to NP in H→ $\gamma \gamma$ loop, unlike H→ ZZ*
 - ▶ λ_{tg} : new coloured particle in ggH loop, unlike ttH

Parameter	Definition in terms of κ modifiers	Result
K _{gZ}	$\kappa_g \kappa_Z / \kappa_H$	1.06 ± 0.07
λ_{tg}	κ_t/κ_g	1.10 + 0.15 - 0.14
λ_{Zg}	κ_Z/κ_g	1.12 + 0.15 - 0.13
λ_{WZ}	κ_W/κ_Z	0.95 ± 0.08
$\lambda_{\gamma Z}$	κ_{γ}/κ_Z	0.94 ± 0.07
$\lambda_{\tau Z}$	κ_{τ}/κ_Z	0.95 ± 0.13
λ_{bZ}	κ_b/κ_Z	$0.93 \stackrel{+ 0.15}{_{- 0.13}}$

• All in agreement with SM!

Ratios of coupling modifiers: correlations

- Correlations matrices indicate how parameters influence eachother
- Independent of total width: observe negative correlations

2HDM/hMSSM interpretations

• Cast coupling modifiers into parameters of benchmark SUSY models

Additional 2HDM interpretations

- Type I: One Higgs doublet couples to vector bosons, while the other one couples to fermions. The first doublet is *fermiophobic* in the limit where the two Higgs doublets do not mix.
- Type II: One Higgs doublet couples to up-type quarks and the other one to down-type quarks and charged leptons.
- Lepton-specific: The Higgs bosons have the same couplings to quarks as in the Type I model and to charged leptons as in Type II.
- Flipped: The Higgs bosons have the same couplings to quarks as in the Type II model and to charged leptons as in Type I.

J. Langford

J. Langford

Effective field theory couplings: STXS re-interpretation

- EFT: in light of no new physics @ TeV scale, assume exists at $\Lambda >> q^2$
 - couplings in Lagrangian modified by higher dimensional operators
- Parametrize STXS bin in terms of EFT params: Higgs Effective Lagrangian (HEL)

$$\mathcal{L}_{\mathrm{HEL}} = \mathcal{L}_{\mathrm{SM}} + \sum_{j} \mathcal{O}_{j}^{(6)} f_{j} / \Lambda^{2}$$

- introduces 39 flavor independent dim-6 operators
- new physics: deviations from 0 in f_j
- consider eight of these
- Scaling functions: $\mu_i(c_j) = \sigma_i^{\text{EFT}} / \sigma_i^{\text{SM}}$
 - for each STXS bin, *i*, where $c_j \propto f_j$

$$\sigma_i^{\rm EFT} = \sigma_i^{\rm SM} + \sigma_i^{\rm int} + \sigma_i^{\rm BSM}$$

$$\Rightarrow \mu_i(c_j) = 1 + \sum_j A_j c_j + \sum_{jk} B_{jk} c_j c_k$$

• Derive A_j and B_{jk} coefficients for each STXS bin

 $\mathcal{O}_g = |H|^2 G^A_{\mu\nu} G^{A\mu\nu}$ $\tilde{O}_a = |H|^2 G^A_{\mu\nu} \tilde{G}^{A\mu\nu}$ $\mathcal{O}_{\gamma} = |H|^2 B_{\mu\nu} B^{\mu\nu}$ $\tilde{\mathcal{O}}_{\gamma} = |H|^2 B_{\mu\nu} \tilde{B}^{\mu\nu}$ $\mathcal{O}_u = y_u |H|^2 \bar{Q}_L H^{\dagger} u_R + \text{h.c.}$ $\mathcal{O}_d = y_d |H|^2 \bar{Q}_L H d_R + \text{h.c.}$ $\mathcal{O}_{\ell} = y_{\ell} |H|^2 \bar{L}_L H \ell_R + \text{h.c.}$ $\mathcal{O}_H = \left(\partial^\mu |H|^2\right)^2$ $\mathcal{O}_6 = \left(H^{\dagger}H\right)^3$ $\mathcal{O}_{HW} = i \left(D^{\mu} H \right)^{\dagger} \sigma^{a} (D^{\nu} H) W^{a}_{\mu\nu}$ $\tilde{\mathcal{O}}_{HW} = i \left(D^{\mu} H \right)^{\dagger} \sigma^a \left(D^{\nu} H \right) \tilde{W}^a_{\mu\nu}$ $\mathcal{O}_{HB} = i \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu}$ $\tilde{\mathcal{O}}_{HB} = i \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) \tilde{B}_{\mu\nu}$ $\mathcal{O}_W = i \left(H^{\dagger} \sigma^a \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$ $\mathcal{O}_B = i \left(H^{\dagger} \overleftrightarrow{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$

EFT parametrization: derivation

$$\mu_i(c_j) = 1 + \sum_j A_j c_j + \sum_{jk} B_{jk} c_j c_k$$

• Using EFT20bs tool: not specific to Higgs

O Generate events per Higgs prod. mode (LO): MADGRAPH w/ PYTHIA showering

Import HEL (UFO): reweight events for different points in HEL param space ⇒ SM: all $c_j = 0$

- \Rightarrow vary c_j individually: ($c_j = w, 0, ..., 0$), (0, w, 0, ..., 0), ...
- \Rightarrow pairwise to calc. B_{jk} cross terms ($j \neq k$): (w,w,0,...0), (w,0,w,0,...,0), ...

Propagate events through <u>RIVET tool</u>: STXS classification (0, 1 and 1.1)

● Extract dependence of STXS bin, *i*, on *c_j* (or *c_jc_k*): *A_j* & *B_{jk}* ⇒ comparing reweighted cross section to SM

WH Leptonic

$$p_T^V [0, 150] = 1 + 33 c_{WW} + 12 c_{HW} + 320 c_{WW}^2 + \dots$$

• Complete HEL parametrization of STXS stage 0, 1 and 1.1 bins provided

J. Langford

EFT interpretation: correlations

• Correlations matrices indicate how parameters influence eachother

