New ideas on sterile neutrino searches at the LHC (and beyond!) LHCP 2020 - Paris

Richard Ruiz

Center for Cosmology, Particle Physics, and Phenomenology (CP3) Universite Catholique de Louvain

UCLouvain

27 May 2020

net

▲ 伊 → ▲ 三

1 / 32

EL SQA

Acknowledgments, Apologies, and Disclaimers

finite time constraints \implies many omissions

- Main focus is on heavy, sterile neutrinos (N) w/o new gauge bosons.
- See references below for Seesaws Types II and III

source material:

- Review on Nu Mass Models at Colliders w/Y. Cai, T. Han, T. Li [1711.02180]
- European Strategy Update 2019 Chapter on Nu Mass Models

w/ T. Han, T. Li, X. Marcano, S. Pascoli, C. Weiland [1812.07831]

③ Other community documents and some newer results

humble reminder: RH neutrinos are **not** the only explanation for tiny ν masses nor are they necessary (e.g., Type II Seesaw)

- Lack of guidance from data \implies broad approach needed
- E.g., models without N, UV completions of NSI,

2 / 32

Motivation for new physics from ν physics.

In neutrino fixed-target expts, ν_{μ} beams from collimated π^{\pm} , then studied at near and far detectors (reminiscent of early SLAC DIS expts)

Collider Connection to Neutrino Mass Models

Neutrino mass models (aka Seesaw models) hypothesize new particles of all masses, spins, charges, and color:

N (Type I),
$$T^{0,\pm}$$
 (Type III), Z_{B-L} , $H_R^{\pm,\pm\pm}$ (Type I+II), ...

Produced in *ee/ep/pp* collisions through gauge couplings and mixing:

$$\mathbf{DY}: q\overline{q} \to \gamma^*/Z^* \to T^+T^- \text{ and } q\overline{q'} \to W_R^{\pm} \to N\ell^{\pm}$$
$$\mathbf{VBF}: W^{\pm}W^{\pm} \to H^{\pm\pm} \qquad \mathbf{GF}: gg \to h^*/Z^* \to N\nu_{\ell}$$

Identification of Seesaw particles through decays to SM particles

some new ideas

6 / 32

New Ideas

• new channels I: $W\gamma$ fusion

w/ Alva, Han [1411.7305]

e new channels II: gg fusion

w/ Spannowsky, Waite [1706.02298]

Inew analysis techniques I: event-based jet vetoes

w/ Pascoli, Weiland [1805.09335, 1812.08750]

new analysis techniques II: new colliders

w/ Costantini, De Lillo, Maltoni, Mantani, Mattelaer, Zhao [2005.10289]

Inew analysis techniques III: new, off-shell gauge bosons

RR [1703.04669]

o new channels III: something new in progress!

w/ Fuks, Neundorf, Peters, Saimpert [In Prep.]

(heavy) sterile neutrino production in pp collisions

... can occur through a variety of mechanisms:

Since 2014, active research program to systematically compare channels For overview, see review: [*1711.02180]

• Clarity needed on (i) m_N , \sqrt{s} dependence and (ii) conflicting claims

• Explore how new techniques can improve analyses from 90's-00's

 \implies better sensitivity, more robust analyses, new public tools

e.g., HeavyN UFOs [feynrules.irmp.ucl.ac.be/wiki/HeavyN]

New channels I:

 $W\gamma$ fusion (the fun channel).

 $W\gamma \rightarrow N\ell^{\pm}$ fusion is interesting for large m_N but subtle due to QED singularities and γ PDF matching

Dev, et al [1308.2209], w/ Alva, Han [1411.7305], w/ Degrande, Mattelaer, Turner [1602.06957]

Careful when choosing γ PDF. Some (NN2.3QED) are just poor statistical fits

for up-to-date comparison see study w/ Fuks, Nemevšek [1912.08975]

How important is $W\gamma$ fusion?

12 / 32

Plotted: LHC 14 sensitivity to active-sterile neutrino mixing (coupling) vs heavy neutrino mass (m_N) in search for $pp \rightarrow \mu^{\pm} e^{\mp} \ell_X$ $(\ell_X = e, \mu, \tau_h)$

Dash = trilepton analysis without Wγ fusion
 Solid = +Wγ fusion ⇒ Wγ drives high-mass sensitivity!

R. Ruiz - CP3, Universite Catholique de Louvain

 ν ideas at the LHC and beyond - LHCP20@Paris

New channels II:

gg fusion (the neglected channel).

▶ < ∃ >

= nar

Heavy neutrinos from GF is pretty cool

Willenbrock, Dicus ('85); Dicus, Roy ('91); Hessler, et al [1408.0983]

w/ Degrande, Mattelaer, Turner [1602.06957]

A = > (see=higgs_iterature)
 A

a subtle point: GF@LO is a poor esitmation for true cross section

R. Ruiz - CP3, Universite Catholique de Louvain

Maturity of modern QCD formalism \implies readily applied to BSM E.g. $gg \rightarrow h^*/Z^* \rightarrow \nu N$ at N³LL ($\approx N^2LO$ normalization)

w/ Spannowsky, Waite [1509.05416]

- $\mathcal{O}(+200\%)$ corrections consistent with $gg \rightarrow H/A$ in 2HDM
- Need: a dedicated study on sensitivity of *leading gg* channel

16 / 32

EL SQA

new analysis techniques I: reenvisioning jet vetoes in searches with event-based¹ jet vetoes²

¹aka: "dynamic jet veto," "phase space-dependent jet veto", or "safe jet veto" ²Early literature: Bjorken (dynamic rapidity gap) [PRD ('93)]; Denner, et al (regulator trick) [0906.1656]; Companario, et al ($x = E_T / \Sigma_k E_T^r$ fraction) [1410.4840]; more recent work by DESY+NIKEF+Mainz: (rapidity-dependent vetoes) 2 = 20 °C R. Ruiz - CP3, Universite Catholique de Louvain ν ideas at the LHC and beyond - LHCP20@Paris 17 / 32

In EW boson scattering, there is an abscence of central color flow \Rightarrow absence of central, high- p_T jets ["Rapidity gaps" Dokshitzer, Khoze, Troyan ('86)]

Basis for **Central Jet Veto**: [Barger, et al, PRD ('91) + PLB ('95); Bjorken, PRD ('94)] • Reject events with any jet satisfying $p_T^j > 25 - 30$ GeV, $|\eta^j| < 2 - 3$ • After applying meaningful jet PID, equivalent to keeping only 0-jet bin • Crucial to Higgs and EW physics but not perfect...

R. Ruiz - CP3, Universite Catholique de Louvain

18 / 32

= 900

Leptons in Vector Boson Scattering

For production of leptons in VBS: $p_T^{\ell_k}$, $S_T \sim M_{VV} \gg p_T^{j_{VBS}} \sim M_V/2$

an idea:³: on an event-by-event basis, set $p_T^{\text{Veto}} = p_T^{\ell_1}$

Inspired by CMS using the ratio $r_i^{\ell} = (p_T^{\ell}/p_T^j)$ for lepton isolation [1701.06940]

VBS events pass by construction; backgrounds interestingly fail

³Pascoli, RR, Weiland [PLB ('18), 1805.09335]

R. Ruiz - CP3, Universite Catholique de Louvain

 ν ideas at the LHC and beyond - LHCP20@Paris

< E ト 王 ー つへの 19 / 32

The impact?

Plotted: LHC 14 sensitivity to active-sterile neutrino mixing (coupling) vs heavy neutrino mass (m_N) in search for $pp \rightarrow \mu^{\pm} e^{\mp} \ell_X$ $(\ell_X = e, \mu, \tau_h)$

Dash = standard analysis with b-jet veto (mirrors 13 TeV CMS, based on [0808.2468])
 Solid = new analysis with 10 - 11× improved sensitivity!

A peak at the future.⁴

 4 Only a few results now. See "big" paper for various flavor, Dirac vs Majorana, and \sqrt{s} permutations [1812.08750] = $\sim \circ \circ \circ$

 $> 10 \times$ improvement \implies competitive sensitivity to cLFV at LHC • **Relative** improvement largely flavor-hypothesis independent

R. Ruiz - CP3, Universite Catholique de Louvain

new analysis techniques II: new colliders

24 / 32

$\mu^+\mu^-$ Colliders

Due to energy (precision) limitations of proposed e^+e^- (*pp*) machines and novel technological advances, discussions on $\mu^+\mu^-$ have restarted

NEW: Multi-TeV $\mu^+\mu^-$ colliders are essentially "high-luminosity weak boson colliders" and opens many frontiers

w/ Costantini, De Lillo, Maltoni, Mantani, Mattelaer, Zhao [2005.10289]

• Need: a dedicated study on sensitivity of $\mu^+\mu^-$ collisions

25 / 32

= nar

new analysis techniques III:

neutrino nonstandard interactions (ν NSI)

and heavy neutrino effective field theories (NEFT)

Interesting observation: vast literature on collider searches for N coupling to new gauge bosons, e.g., W_R in LRSM, *most always* assume that both N and W_R are resonantly produed

If new gauge mediators are too heavy, light N are still accessible

Exmaple: When $M_{W_R} \gg \sqrt{\hat{s}}$ but $m_N \leq \mathcal{O}(1)$ TeV, $pp \rightarrow N\ell + X$ in the LRSM and phenomenological Type I Seesaw are not discernible

w/ Han, Lewis, Si, [1211.6447]; RR, [1703.04669]

• Same signature:
$$pp \rightarrow \ell^{\pm}\ell^{\pm} + nj + X + p_T^{\ell} \gtrsim \mathcal{O}(m_N) + \text{no MET}$$

How about reinterpreting search for phenomenological Type I Seesaw?

At 14 (100) TeV with $\mathcal{L} = 1$ (10) ab^{-1} , $M_{W_R} \lesssim 9$ (40) TeV probed DO NOT STOP SEARCHING FOR TYPE I LNV

New channels III: something new?

How heavy is too heavy for the LHC?

Question: is a multi-TeV N too heavy for the LHC?

w/ Fuks, Neundorf, Peters, Saimpert [In Prep.]

... maybe, maybe not

Heavy neutrinos remain one of the best (but not the only!) explanations for tiny neutrino masses see review for details! [1711.02180]

Over the past few years new ideas on:

- Production mechanisms
- Analysis techniques (possible with new tools)
- New collider scenarios

have pushed sensitivity to neutrino mass models at colliders to new levels!

• lots of work still to do and help is always welcomed!

31 / 32

ヘロマ うほう イロマ うのつ

Thank you.

32 / 32

Backup I: heavy neutrino mixing for non-experts

(Heavy) Neutrino Mixing for Non-experts (1/1)

After EWSB, ν_{ℓ} and N_R have same quantum numbers \implies mixing!

Example: In a two-state system, mixing between chiral eigenstates and mass eigenstates is given by unitary transformation/rotation

Decompose chiral/interaction states into mass states using:

$$\underbrace{|\nu_L\rangle}_{\text{interaction basis}} = \cos\theta \underbrace{|\nu_1\rangle}_{\textit{light}} + \sin\theta \underbrace{|N_2\rangle}_{\textit{heavy}} \stackrel{\theta \ll 1}{\approx} (1 - \frac{1}{2}\theta^2) |\nu_1\rangle + \theta |N_2\rangle$$

Generically, one can parameterize many heavy N couplings to the SM with

$$\nu_{\ell L} \approx \sum_{m=1}^{3} \underbrace{U_{\ell m}}_{\mathcal{O}(1)} \nu_{m} + \underbrace{V_{\ell m'=4}}_{\mathcal{O}(???)} N_{m'=4}$$

Atre, Han, Pascoli, Zhang [0901.3589]

Backup II: heavy neutrino couplings to SM Currents

Heavy Neutrinos Couplings to EW Bosons

Consider left-handed (LH) $SU(2)_L$ doublets (gauge basis):

$$L_{aL} = \left(\begin{array}{c} \nu_a \\ l_a \end{array} \right)_L, \quad a = 1, 2, 3.$$

The SM W chiral coupling to leptons in flavor basis is given by

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{\ell=e}^{\tau} \left[\overline{\nu_{\ell L}} \gamma^{\mu} P_L \ell^- \right] + H.c.$$

The SM W chiral coupling to **leptons** in the **mass basis**

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{\ell=e}^{\tau} \left[\sum_{m=1}^{3} \overline{\nu_m} U^*_{m\ell} + \overline{N^c} V^*_{N\ell} \right] \gamma^{\mu} P_L \ell^- + H.c.$$

 \implies **N** is accessible through W/Z/h currents

シック 正則 スポッスポッス モッ

Backup III: heavy neutrino decoupling

Agnostic Approach to Heavy N Mixing

In pure Type I scenarios, tiny m_{ν} obtained in two ways:

• High-scale seesaw: $\mu_M \gg \langle \Phi_{SM} \rangle \implies m_\nu \sim m_D \left(\frac{m_D}{\mu_M} \right), \ m_N \sim \mu_M$

Leads to generic decoupling of N and LNV from colliders

2 Low-scale seesaw: $\mu_M \ll \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \mu_M \left(\frac{m_D}{m_R} \right)^2$, $m_N \sim m_R$ Known also in literature as Inverse Seesaw. Linear Seesaw. Protective Symmetries, etc.

Apriori, no preference for either without additional theory prejudice:

• LNC Option: Low-scale Type I + if ν approx. massless on expt scale, i.e., $\tilde{m}_{\nu}^2/Q^2 \approx 0 \implies$ approximate *L* conservation w/ Pascoli, et al. [1812.08750]

See also, Pilaftsis [hep-ph/9901206], Kersten and Smirnov [0705.3221], Pascoli, et al, [1712.07611]

• **LNV Options**: Collider LNV via $N_i \implies$ more new particles!

RR [1703.04669]