Searches for exotic decays of a 125 GeV Higgs boson at ATLAS & CMS

Ren-Jie Wang Johannes Gutenberg-Universität Mainz On Behalf of the ATLAS and CMS Collaborations

Introduction

- The discovered 125 GeV Higgs boson is compatible with • the Standard Model (SM) prediction.
- However, the SM cannot provide complete descriptions of • the following issues:
 - "hierarchy problem" (m_h << m_{Planck})
 - existence of dark matter and dark energy
 - existence of neutrino masses
 - matter-antimatter asymmetry -
- Strong indications that the SM is only a **low-energy approximate** of a more advanced theory.
- Many theories beyond the Standard Model (BSM) were • developed to overcome the limitations of the SM (e.g. SUSY, extra Higgs doublets, composite Higgs, Higgs portals to dark matter...).
- Looking at new/exotic Higgs boson decays provides us a unique approach to BSM searches.

Exotic Higgs searches at ATLAS & CMS

- Search for Higgs boson decaying to
 - non-SM particles: light scalars (→SM particles) or new stable particles
 - SM particles: rare or **forbidden** in SM

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG/index.html

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ResultswithData2018

Lepton flavour violating			
$h \rightarrow e\tau$	ATLAS EXPERIMENT		
$h \rightarrow \mu \tau$	ATLAS EXPERIMENT		
$h \rightarrow e\mu$	ATLAS		

Two-Higgs-doublet model + one complex scalar singlet (2HDM+S)

- The **2HDM** is one of the simplest extensions of the SM (motivated by MSSM, axion models...)
- Two Higgs doublets ϕ_1 , ϕ_2 , after symmetry breaking =>
 - (h, H) neutral Higgs bosons which are CP-even (scalar),
 - (A) neutral Higgs boson and CP-odd (pseudo-scalar),
 - (H[±]) charged Higgs bosons
 - $\tan\beta$: the ratio of the VEV of the two Higgs doublets
 - α : the mixing angle between the CP-even Higgs bosons
- Different categories depending on the type of interaction • of the two doublets with quarks and charged lepton.
- In addition, the extra **complex scalar singlet** only couples • to the two Higgs complex fields in the **potential** and has **no Yukawa couplings =>** light pseudo-scalar (a)
 - all of its couplings to SM fermions are through mixing of the scalar with the Higgs fields, and **small** to preserve the SM nature of the Higgs sector

Models which lead to natural flavour conservation. The superscript *i* is a generation index. By convention, the u_R^i always couple to Φ_2 .

Model	u_R^i	d_R^i	
Type I → Fermiophobic Type II → MSSM-like Lepton-specific Flipped	$egin{array}{c} arPsi_2 \ arp$	$egin{array}{c} arPsi_2 \ arPsi_1 \ arPsi_2 \ arPsi_2 \ arPsi_2 \ arPsi_2 \ arPsi_2 \ arPsi_1 \ arp$	

G.C. Branco et al. / Physics Reports 516 (2012) 1–102

Type II, $\tan \beta = 5$

- In most of 2HDM+S models, $B(a \rightarrow bb)$ dominates in the range of ma > 10 GeV
- This analysis was recently extended in the ZH production to cover the mass regime 15 GeV $\leq m_a \leq 30$ GeV
- To investigate the boost case of $a \rightarrow bb$, a special BDT based-on track-jets is trained for reconstruction and identification
- No significant excess of events above the SM background prediction is observed
- This novel search improves the expected limit on σxB for $m_a = 20 \text{ GeV}$ by a factor of 2.5 w.r.t. the previous result

CERN-EP-2020-061

Search for $h \rightarrow aa \rightarrow 2\mu 2b$ in ggF and VBF productions

- In the Type-III 2HDM+S (with enhanced lepton couplings), $B(a \rightarrow \mu\mu)$ can also be relatively large
 - **ATLAS**: Exactly 2 b-tagged jets, kinematic fit to m_{bbµµ}, the floating normalization of the ttbar and DY backgrounds are determined from CRs
 - Observed (σ_H/σ_{SM}) × B upper limit @95%CL: (1.2– 8.4)×10⁻⁴ in the a-boson mass range of 20 to 60 GeV
 - CMS: 3 categories based on b-tagged jets, analytic functions are used to model both signal and backgrounds, simultaneously unbinned likelihood fitting
 - Observed (σ_H/σ_{SM})× B upper limit @95%CL : (1–7)×10-4 for the mass range 20 to 62.5 GeV

- hadron-plus-strips algorithm
- [11,25].

arXiv:2005.08694

3.6 GeV < m_a < 21 GeV, the \mu\mu and the \tau\tau pairs have high Lorentz boost and are collimated. A special technique is developed for boosted τ lepton pair reconstruction (a $\rightarrow \tau_{\mu}\tau_{h}$) base on

The 2D fit of $m(\mu\mu)$ vs. $m(\tau_{\mu}\tau_{h})$ is performed in data, three $m(\mu\mu)$ ranges: [2.5,8.5], [6,14], and

Search for $h \rightarrow aa \rightarrow \gamma \gamma gg$

- 20 GeV < m_a < 60 GeV
- Selecting the VBF Higgs production, more effective suppression of the background. • - ggF production mode has a larger cross-section, but is overwhelmed by the yy+multi-jet
 - background.
- Events are required to have at least 4 jets •

The observed 95%CL upper limit is set for $\sigma xB(H \rightarrow aa \rightarrow \gamma \gamma \gamma gg) < 3.1-9.0 \text{ pb}$ depending on m_a

Search for $h \rightarrow Z(\ell \ell)a, h \rightarrow Z(\ell \ell)\eta_c, h \rightarrow Z(\ell \ell)J/\psi$

- •
- - individual substructure variables are combined using machine learning techniques
 - a multilayer perceptron (MLP) classifier is used for event selection
- Data-driven estimation for the total background •

nator

arXiv:2004.01678

Search for Higgs boson decays into a Z boson (leptonic decays) and a light pseudo-scalar/meson to a single jet Jet substructure variables are used for the reconstruction of this light, boosted, hadronic pseudo-scalar/meson

> 95% CL **observed** upper limits set: $\sigma xB(H \rightarrow aa)$: **17–340 pb** for m_a from 0.5 GeV to 4 GeV

> 95% CL observed upper limits set: $\sigma(pp \rightarrow H)B(h \rightarrow Z\eta_c)$: 110 pb $\sigma(pp \rightarrow H)B(h \rightarrow Z J/\psi):100 pb$

and the ρ^0 or ϕ mesons decaying into pairs of pions or kaons. ected as a pair of oppositely charged particle tracks ΔR od separation with lepton tracks of the Z boson - at least one of the tracks must have $p_T > 10$ GeV, isolated di-track system

• in data sidebands

CMS PAS HIG-19-012

Main background: Drell-Yan $Z \rightarrow \ell \ell$ with a genuine or misidentified meson candidate, determined

No significant excess above the background model is observed.

95% CL **observed** upper limits set: B(H → Zφ) < 0.36% – 0.58% $B(H \rightarrow Z\rho^0) < 1.21\% - 1.89\%$ depending on the polarization scenarios

Summary plot of 2HDM+S

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ <u>CombinedSummaryPlots/HDBS/</u>

https://twiki.cern.ch/twiki/bin/view/CMSPublic/ <u>SummaryResultsHIG</u>

Search for $h \rightarrow ZZ_d/Z_dZ_d \rightarrow 4\ell$

- Two event topologies (ZZ_d and Z_dZ_d) are defined to maximize the sensitivity of searches
 - different selections are applied on these two topologies
- Irreducible backgrounds (ZZ, SM Higgs boson) are estimated by simulation, reducible background (Z+jets) are estimated from data
- No significant deviation from the standard model expectation is observed.

CMS PAS HIG-19-007

Lepton flavour violating

- Lepton flavour violating decays of the Higgs boson are <u>forbidden</u> in the SM but occur in many new physics scenarios.
- Both leptonic and hadronic decays of τleptons are considered in ATLAS and CMS, further categorization by using the number of jets.
 - events are further categorized into VBF and non-VBF categories.
- Same flavour lepton pairs are rejected to suppress Drell-Yan background.
- BDT classifiers are exploited in individual categories to enhance the signal separation from the background.

No significant excess is observed above the expected background from SM processes!

JHEP 06 (2018) 001

PLB 800 (2020) 135069

Lepton flavour violating $h \rightarrow \mu \tau$

ATLAS: B(h $\rightarrow \mu \tau$) < **0.28%** (0.37^{+0.14} $_{-0.10}$ %) at 95%CL

Lepton flavour violating $h \rightarrow e\tau$

ATLAS: $B(h \rightarrow e\tau) < 0.47\%$ (0.34^{+0.13} -0.10 %) at 95%CL

CMS: B(h → eT) < **0.61%** (0.37%) at 95%CL

JHEP 06 (2018) 001

Lepton flavour violating $h \rightarrow e\mu$

- Eight categories differing in their expected S/B ratios are defined.
- background.
- No evidence of the decay $h \rightarrow e\mu$ is observed.
 - **ATLAS**: $B(h \rightarrow e\mu) < 6.2 \times 10^{-5} (5.9 \times 10^{-5})$ at 95%CL @13TeV
 - **CMS**: $B(h \rightarrow e\mu) < 3.5 \times 10^{-4} (4.8 \times 10^{-4})$ at 95% CL **@8TeV**

Analytic functions are used to describe the $m_{e\mu}$ distributions for both the signal and the

Conclusions

- The latest exotic Higgs boson decay searches in ATLAS and CMS are reported.
- No significant deviations yet observed from SM predictions. •

Looking forward to more results from ATLAS and CMS using the full Run-2 dataset!

Thanks for your attention!

Two-Higgs-doublet model + one complex scalar singlet (2HDM+S)

)

Two-Higgs-doublet model + one complex scalar singlet (2HDM+S)

Search for $h \rightarrow aa \rightarrow 4b$

- In most of 2HDM+S models, $B(a \rightarrow bb)$ dominates in the range of ma > 10 GeV
- WH or ZH production with a single lepton or two leptons accompanied by a high multiplicity of b-tagged jets
- Consider mass of a-boson: 20 GeV $\leq m_a \leq 60$ GeV
- Events are categorized into 7 CRs and 6 SRs according to the number of leptons, jets and b-tagged jets.
- A boosted decision tree (BDT) is trained in SRs
- 95%CL **obs**(exp) limits: $\sigma xB < 3.0$ (2.2) pb @m_a=20 GeV, **1.3** (0.74) pb @m_a=60 GeV

Search for $h \rightarrow aa \rightarrow 2\mu 2\tau/2b2\tau$

- have high Lorentz boost and are collimated.
- lepton pair reconstruction (a $\rightarrow \tau_{\mu}\tau_{h}$).
- •

Search for $h \rightarrow aa \rightarrow 4\tau/2\mu 2\tau$

- 4 GeV < m_a < 15 GeV, boosted scenario, decay • products are collimated and fail the isolation selection criteria
 - Special analysis strategy: each a-boson is identified by the presence of a muon and only one additional charged particle
- Events are selected by using **same-charge (SC)** dimuon systems with large angular separation
- Backgrounds from the ttbar, Drell-Yan, and diboson • production are largely suppressed by the SC muon requirement
- The signal is extracted with a binned maximum-likelihood fit applied to different (m_{a1},m_{a2}) regions

PLB 800 (2019) 135087

Search for $h \rightarrow aa \rightarrow 4\tau/2b2\tau/2\mu 2\tau$

Search for $h \rightarrow aa \rightarrow 4\mu$ in ggF production

- Searching for low mass a-bosons, it is more boosted and muons are less separated
- ATLAS
 - $120 \text{ GeV} < m_{41} < 130 \text{ GeV}$, $0.88 \text{ GeV} < m_{12,34} < 20 \text{ GeV}$.
 - Events are vetoed if containing quarkonia resonances [J/ - Ψ , Ψ (2S), Υ (1S), and Υ (3S)]
 - Observed (σ_H/σ_{SM}) × B(h → aa) upper limit @95%CL ~ 8x10-4 for m_a=1GeV

JHEP 06 (2018) 166

- Prompt double J/ ψ meson background is is negligible
- $0.25 < m_a < 8.5 \text{ GeV}$

