

Search for Dark Photons at LHCb

Constantin Weisser, MIT weisser@mit.edu on behalf of the LHCb collaboration LHCP May 29th 2020

The Chasm

Lightest DM particle could be stable because it is (dark) charged

What if there is no connection between the SM and Dark Sector up to the Planck Scale?

The Chasm

Lightest DM particle could be stable because it is (dark) charged

What if there is no connection between the SM and Dark Sector up to the Planck Scale?

Portals

The force carriers of the two sectors can couple if the sectors are somehow connected (even at a large mass scale).

Vector (Dark Photon) Portal

The dark photon mixes with the SM photon. The coupling to SM particles is proportional to electric charge.

1 or 2 loops: naively $10^{-5} \le \epsilon \le 10^{-3}$

Visible A' Decays

DM-DM self interactions and 1 or 2 loop regime bound a naively interesting region.

LHCb

• Single-arm forward spectrometer ($2 < \eta < 5$; $1 < \theta < 15^{\circ}$)

7

- Excellent lifetime ($\sigma_{\tau} = 45 fs$) and mass ($\sigma_m = 0.4\%$) resolution
- Unique particle ID and flexible triggering.

LHCb, JINST 3 (2008) S08005 LHCb Int.J.Mod.Phys. A 30 (2015) 1530022 [1412.6352]

LHCb Inclusive A' $\rightarrow \mu^+ \mu^-$

Production: Pseudoscalar Meson Decay, Drell Yan, ...

Prompt Backgrounds

- 1. $\gamma^* \rightarrow \mu^+ \mu^-$ production
- 2. Resonant decays to $\mu^+\mu^-$
- 3. Various types of misreconstruction:

[Irreducible] [Veto these regions]

Muons from heavy-flavor quark decays misreconstructed as prompt [Fits] Double misidentification of prompt hadrons as muons [$\mu^{\pm}\mu^{\pm}$ sample]

A mix of these two $[\mu^{\pm}\mu^{\pm}sample]$

Above $m'_A > 1.1 \ GeV$ misreconstruction still dominates.

[Isolation]

Dimuon Spectrum

Prompt Strategy

No knowledge of the detector efficiency or luminosity is needed.

Prompt Results

Run 2 90% CL prompt exclusion limits from dimuon threshold to 70 GeV

This analysis produces the most stringent constraints on dark photons with 214 < m(A') < 740 MeV and 10.6 < m(A') < 30GeV.

Displaced Backgrounds

1. B-hadron decay chains that produce two muons

[Require decay topology to be consistent with a 2-body long-lived particle decay that originated at a PV ; Rejected if selected by inclusive heavy-flavor software trigger + BDT classifiers]

2. $K_S^0 \rightarrow \pi^+ \pi^-$ tail

[This limits the mass range for the displaced search. Subtracted by extrapolation]

3. Photon conversions to $\mu+\mu-$ in the silicon-strip vertex detector [Rejected by material veto tool]

Prompt Strategy

Displaced Strategy

Displaced Results

Ratio of the observed upper limit on $n^{A'}[m(A'), \epsilon^2]$ at 90% CL to the expected dark photon yield, $n_{ex}^{A'}[m(A'), \epsilon^2]$

Regions less than unity are excluded. Almost all regions are close to exclusion.

LHCb Limits: Run 2 Data

Significantly larger regions of space ar expected to be covered in run 3.

Can recast as searches for other vector models (B, B-L, protophobic, ...)

LHCb PRL 124 (2020) 041801 [1910.06926] Y: LHCb JHEP 8 (2018) 147 [1805.09820]

Non-Minimal Searches

Probe additional dark matter scenarios by

- Relaxing kinetic mixing assumption
- Applying extra cuts for dedicated searches

Now need to

- Calculate absolute efficiencies and luminosity
- Provide results in bins of mass and p_T

Non-Minimal Searches

Prompt:

Inclusive

Beauty Associated

Displaced:

NISIO

Promptly produced

Inclusive

No signal found!

Prompt Non-Minimal Results

Low mass upper limits at 90% CL on $\sigma(X \to \mu^+ \mu^-)$

LHCb-PAPER-2020-013 in preparation

NER

20

Prompt Non-Minimal Results

<u>Non-zero Gamma at higher masses considered</u>

MER

High mass upper limits at 90% CL on $\sigma(X \rightarrow \mu^+ \mu^-)$

40

30

50

m(X) [GeV]

LHCb-PAPER-2020-013 in preparation

 $10\,\mathrm{fb}$

1 fb

Beauty Associated

2

Inclusive

Displaced Non-Minimal Results

Promptly Produced

Inclusive

Upper limits at 90% CL on $\sigma(X \rightarrow \mu^+ \mu^-)$

LHCb-PAPER-2020-013 in preparation

NEW

Two-Higgs Doublet

Upper limits at 90% CL on X-H mixing angle for the 2HDM scenario

Phys. Rev. D 93, 055047 (2016) [1601.05110]

NIST

Hidden Valley

Upper limits at 90% CL on γZ_{HV} kinetic mixing strength for the HV scenario

Phys. Rev. D 93, 055047 (2016) [1601.05110]

NER

Dark Sectors are dark matter scenarios worth exploring

LHCb has world leading sensitivity to different models

Non-Minimal Fiducial Regions

all searches

 $p_{\rm T}(\mu) > 0.5 \,\text{GeV}, \quad 10 \,\text{GeV} < p(\mu) < 1 \,\text{TeV}, \quad 2 < \eta(\mu) < 4.5, \quad \sqrt{p_{\rm T}(\mu^+)p_{\rm T}(\mu^-)} > 1 \,\text{GeV} \\ 5 \le n_{\rm charged}(2 < \eta < 4.5, \, p > 5 \,\text{GeV}) < 100 \text{ (from same PV as } X \to \mu^+\mu^-)$

prompt-like $X \to \mu^+ \mu^-$ decays

 $\begin{array}{ll} 1 < p_{\rm T}(X) < 50 \, {\rm GeV}, & X \mbox{ proper decay time } < 0.1 \, {\rm ps}, & \alpha(\mu^+\mu^-) > 1 \, {\rm mrad} \\ 20 < p_{\rm T}(b\mbox{-jet}) < 100 \, {\rm GeV}, & 2.2 < \eta(b\mbox{-jet}) < 4.2 \, (X+b \mbox{ only}) \end{array}$

displaced $X \rightarrow \mu^+ \mu^-$ decays

 $2 < p_{\rm T}(X) < 10 \,{\rm GeV}, \ 2 < \eta(X) < 4.5, \ \alpha(\mu^+\mu^-) > 3 \,{\rm mrad}, \ 12 < \rho_{\rm T}(X) < 30 \,{\rm mm}$

LHCb Trigger

A flexible triggering scheme is needed to select low energy candidates.

Turbo

Full Stream

10 kHz ~70 kB per event 700 Mb/s output rate

Turbo Stream

2.5 kHz ~5 kB per event 12.5 Mb/s output rate

LHCb Inclusive A' $\rightarrow \mu^+ \mu^-$

Two oppositely charged tracks with good-quality vertex satisfying stringent mulD $p_T(A') > 1 \text{ GeV}; \quad 2 < \eta(\mu) < 4.5; \quad p_T((\mu) > 0.5 \text{ GeV}; \quad p(\mu) > 10 \text{ GeV}$

Prompt

Dimuons originating from a PV $p_T(\mu+) p_T(\mu-) > 1.0 \text{ GeV}^2$ Isolation for $m'_A > 1.1 \text{ GeV}$ No Shared Muon Hits Displaced

Displaced A' originating from a PV 2 < η(A') < 4.5 Heavy Flavor Veto Material Veto

Prompt Normalisation

Determine observed off-shell photon yield:

- 1. Estimate misID background by subtracting $\mu^{\pm} \mu^{\pm}$ yields
- 2. Estimate heavy flavor background by performing binned extended maximum likelihood fits to the min $[\chi^2 IP(\mu^{\pm})]$ distributions

 $\chi^2_{IP}(\mu^{\pm})$: difference in the vertex-fit χ^2 when the PV is reconstructed with and without the muon

Bump Hunt

No significant access found

Velo Material Map

High-precision material map produced from secondary hadronic interactions

A p-value is assigned to the photon-conversion hypothesis for candidate A m(A') dependent cut is applied on this p-value.

Displaced Fits

3D binned extended maximum likelihood fits Templates are derived from control samples. Conversions are extrapolated from candidates rejected by cut.

For visible decays $\tau(A') \propto \frac{1}{m(A')\epsilon^2}$:

 $n^{A'}[m(A'), \tau(A')] \rightarrow n^{A'}[m(A'), \epsilon^2]$

Most significant excess: 2 σ

Non-Minimal Prompt Norm

Simulation Tag & Probe $J / \psi \rightarrow \mu^+ \mu^-$ Tag and Probe

 $\varepsilon(A' \to \mu^+ \mu^-) = \varepsilon_{\rm reco}(\mu^+)\varepsilon_{\rm reco}(\mu^-)\varepsilon_{\rm L0}(\mu^+ \mu^-)\varepsilon_{\rm PID}(\mu^+)\varepsilon_{\rm PID}(\mu^-)\varepsilon_{\rm sel}(\mu^+ \mu^-),$

 $J / \psi \rightarrow \mu^+ \mu^-$ TIS TOS Various Known efficiencies

No official luminosity calibration -> use reconstructed $Z \rightarrow \mu^+ \mu^-$

Invisible A' Decays

Serendipity in A' Searches

Accounting for production, branching ratio and detection efficiency, existing and future searches can be recast to any vector model.

Recast your model with https://gitlab.com/philten/darkcast

37 P

Plot from Ilten, Soreq, Thaler, Williams, Xue [1801.04847]

Recasting A' as any Vector

	Ι	nu	u type	d type
Α'	-g _e	0	$\frac{2g_e}{3}$	$\frac{g_e}{3}$
B	$-\left(\frac{g_e}{4\pi}\right)^2$	0	$\frac{1}{3}$	$\frac{1}{3}$
B-L	-1	-1	$\frac{1}{3}$	$\frac{1}{3}$
Proto phobic	-1	0	$-\frac{1}{3}$	$\frac{2}{3}$