Searches for long-lived particles in CMS

Allison Reinsvold Hall
Fermi National Accelerator Laboratory

On behalf of the CMS Collaboration

Long-lived particle searches

- Long-lived particles (LLPs) appear in many well-motivated BSM models
 - Approximate symmetries, small mass splittings, small couplings
- Unique, challenging signatures
 - Not the way the CMS detector was designed to be used
 - Often require non-standard reconstruction techniques
 - Dominated by novel backgrounds such as nuclear interactions, tracking errors

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider, arXiv:1903.04497

3 LHCP 2020 May 28, 2020

CMS LLP program

• CMS is pursuing a broad program of long-lived particle searches

Overview of CMS long-lived particle searches

Full list, CMS Exotica results

4 LHCP 2020 May 28, 2020

CMS LLP program

- CMS is pursuing a broad program of long-lived particle searches
- Recent results: search for displaced jets

Overview of CMS long-lived particle searches

Full list, CMS Exotica results

5 LHCP 2020 May 28, 2020

CMS LLP program

- CMS is pursuing a broad program of long-lived particle searches
- Recent results: search for displaced jets and disappearing tracks

Overview of CMS long-lived particle searches

Displaced jets

CMS-PAS-EXO-19-021 http://cds.cern.ch/record/2717071

Search for displaced jets in CMS

- Model-independent search for long-lived particles decaying into jets
- Look for a pair of displaced jets (dijet) and at least one secondary vertex (SV)
- Use 95 fb⁻¹ collected in 2017/2018
 - Combine with 2016 datasets to set results using 132 fb⁻¹
- Dedicated displaced-jet triggers
 - Trigger on total energy in calorimeters (H_T) and jets passing cuts on number of prompt/displaced tracks
 - Allows **low-mass models** to be probed (eg H→SS decays in ggH production)

- Simplified jet-jet model: used as a benchmark
 - pp \rightarrow XX, X \rightarrow jj

- Simplified jet-jet model: used as a benchmark
 - pp \rightarrow XX, X \rightarrow jj
- Exotic SM Higgs decay: occurs in BSM scenarios such as Hidden Valley models
 - pp \rightarrow H \rightarrow SS, S \rightarrow jj

- Simplified jet-jet model: used as a benchmark
 - pp \rightarrow XX, X \rightarrow jj
- Exotic SM Higgs decay: occurs in BSM scenarios such as Hidden Valley models
 - pp \rightarrow H \rightarrow SS, S \rightarrow jj
- Split SUSY: gluino decays suppressed by heavy squark
 - pp -> $\widetilde{g}\widetilde{g}$, \widetilde{g} -> jj $\widetilde{\chi}^0$

- Simplified jet-jet model: used as a benchmark
 - pp \rightarrow XX, X \rightarrow jj
- Exotic SM Higgs decay: occurs in BSM scenarios such as Hidden Valley models
 - pp \rightarrow H \rightarrow SS, S \rightarrow jj
- Split SUSY: gluino decays suppressed by heavy squark
 - pp -> $\widetilde{g}\widetilde{g}$, \widetilde{g} -> jj $\widetilde{\chi}^0$
- Other models include GMSB SUSY, RPV SUSY models

Dijet and SV reconstruction

- 1. Construct dijet candidates
- 2. Match **tracks** to jets using ΔR
- 3. Construct secondary vertex
 - Inputs: displaced tracks (IP $_{\rm 2D} > 0.5$ mm) associated with dijet
 - Require vertex inv. mass > 4 GeV, $p_T > 8 \text{ GeV}$
 - Additional cuts on χ^2 , fraction of track energy from SV, compatibility with primary vertices, and second-highest IP_{2D}

Require significant jet energy (> 500 GeV) for triggering

Nuclear interaction veto

- Nuclear interactions (NI) in material can produce displaced jet signature
- Map tracker material in transverse plane using data control region
- Vertex candidates that overlap with the NI map are vetoed

Gradient BDT

- After NI veto, primary background comes from QCD events
- Train using control region in data for background, jet-jet model for signal
- Input variables:
 - Vertex track multiplicity
 - Vertex L_{xy} significance
 - Cluster RMS (measure of consistency of vertex and tracks with dijet hypothesis)
 - Sum of signed IP_{2D}/σ_{IP} (κ)

Gradient BDT

- After NI veto, primary background comes from QCD events
- Train using control region in data for background, jet-jet model for signal
- Input variables:
 - Vertex track multiplicity
 - Vertex L_{xy} significance
 - Cluster RMS (measure of consistency of vertex and tracks with dijet hypothesis)
 - Sum of signed IP_{2D}/σ_{IP} (κ)
- Signal region: GBDT score > 0.988

Background prediction

- Background prediction is purely data-driven
- Expanded ABCD method
 - Using number of 3D prompt tracks in each jet and overall event GBDT score
 - Signal region: both jets satisfy $N_{\rm 3D~prompt} < 3$, and event GBDT score > 0.988
- Predicted background: $0.75 \pm 0.44(\text{stat}) \pm 0.39(\text{syst})$ events
- Observation: 1 event

Results

- 95% confidence level limits set on signal models
- Exclude SM Higgs \rightarrow SS \rightarrow light quarks at 1% branching fraction

Jet-Jet model

Exotic SM Higgs decay

Split SUSY

Disappearing tracks

CMS-PAS-EXO-19-010

Accepted for publication in PLB

https://arxiv.org/abs/2004.05153

Search for disappearing tracks

- Signature driven search for charged, long-lived particles decaying within silicon tracker
- Use 13 TeV data from 2017/18, corresponding to 101 fb⁻¹
 - Combined with 2015/2016 data for 140 fb⁻¹
- Predicted by many models, including anomaly-mediated supersymmetry breaking (AMSB)

$$\tilde{\chi}^{\pm} \to \pi^{\pm} \chi^0$$

- Chargino is long-lived due to small masssplitting
- Neutralino doesn't interact, pion is too soft to reconstruct

Analysis overview

- Look for isolated track with:
 - Missing outer hits
 - No energy in calorimeters or muon system
- Dedicated trigger using ISR jet at L1, isolated track at HLT

- Primary backgrounds:
 - Isolated, charged **leptons** that have energetic bremsstrahlung or are misreconstructed
 - Spurious tracks from pattern recognition errors

AMSB signal event in MC

Event selection

- ISR jet, MET > 120 GeV
- Track selection:
 - $p_T > 55 \text{ GeV}, |\eta| < 2.1$
 - \geq 4 pixel hits
 - Well-isolated from jets and leptons
 - Pass fiducial selections: veto coverage gaps, regions of low lepton reco efficiency

• No missing inner/middle silicon hits (minimize spurious tracks)

- Disappearing track:
 - $E_{calo} < 10 \; GeV \; within \; \Delta R < 0.5$
 - ≥ 3 missing outer hits

3 signal categories based on number of layers: $N_{lav} = 4, 5, \ge 6$

Event selection

- ISR jet, MET > 120 GeV
- Track selection:
 - $p_T > 55 \text{ GeV}$, $|\eta| < 2.1$
 - ≥ 4 pixel hits
 - Well-isolated from jets and leptons
 - Pass fiducial selections: veto coverage
 - gaps, regions of low lepton reco efficiency

- No missing inner/middle silicon hits (minimize spurious tracks)
- Disappearing track:
 - $E_{calo} < 10 \; GeV \; within \; \Delta R < 0.5$
 - ≥ 3 missing outer hits

3 signal categories based on number of layers: $N_{lav} = 4, 5, \ge 6$

Background estimate

- Data-driven background methods
- For leptons, calculate probability for each flavor lepton to pass each step of selection
 - Apply probabilities to single lepton control region
- For spurious tracks, estimate in $Z \to \mu\mu$, $Z \to ee$ events using d_0 sideband
- Spurious tracks dominate at low n_{lav} , leptons dominate for long tracks
- Expected $47.8^{+2.7}$ _{-2.3}(stat) \pm 8.1 (syst) background events, observed 48 events

Data-taking period	$n_{\rm lay}$	Expected backgrounds			Observation
Data-taking period		Leptons	Spurious Tracks	S Total	Observation
2017	4	$1.4\pm0.9\pm0.2$	$10.9 \pm 0.7 \pm 4.7$	$12.2 \pm 1.1 \pm 4.7$	17
	5	$1.1\pm0.4\pm0.1$	$1.0\pm0.2\pm0.6$	$2.1\pm0.4\pm0.6$	4
	≥6	$6.7\pm1.1\pm0.7$	$0.04 \pm 0.04^{+0.08}_{-0.04}$	$6.7\pm1.1\pm0.7$	6
2018 A	4	$1.1^{+1.0}_{-0.6}\pm0.1$	$6.2 \pm 0.5 \pm 3.5$	$7.3^{+1.1}_{-0.8} \pm 3.5$	5
	5	$0.2^{+0.6}_{-0.2}\pm0.0$	$0.5\pm0.1\pm0.3$	$0.6^{+0.6}_{-0.2} \pm 0.3$	0
	≥6	$1.8^{+0.6}_{-0.5}\pm0.2$	$0.04 \pm 0.04^{+0.06}_{-0.04}$	$1.8^{+0.6}_{-0.5} \pm 0.2$	2
2018 B	4	$0.0^{+0.8}_{-0.0}\pm0.0$	$10.3 \pm 0.6 \pm 5.4$	$10.3^{+1.0}_{-0.6}\pm5.4$	11
	5	$0.4^{+0.7}_{-0.3}\pm0.1$	$0.6\pm0.2\pm0.3$	$1.0^{+0.7}_{-0.3} \pm 0.3$	2
	≥6	$5.7^{+1.2}_{-1.1} \pm 0.6$	$0.00^{+0.04}_{-0.00} \pm 0.00$	$5.7^{+1.2}_{-1.1} \pm 0.6$	1

Results

- Combined with 2015/2016 results for purely wino $\chi^0 \to \text{best limits to date!}$
 - Exclude up to 884 GeV at 3ns, 474 GeV at 0.2 ns
- First limits from disappearing track signature for higgsino χ^0
 - Exclude up to 750 GeV at 3ns, 175 GeV at 0.05 ns

Conclusions

- CMS is pursuing a broad program of long-lived particle searches
- Search for displaced jets:
 - Reconstruct dijets and secondary vertex from displaced tracks
 - Exclude SM Higgs \rightarrow SS, S \rightarrow light quarks at 1% branching fraction
 - Exclude gluino masses up to 2500 GeV in split SUSY model for 5 mm $< c\tau < 520$ mm
- Search for disappearing tracks:
 - Improve limits on wino χ^0 by > 150 GeV compared to previous CMS results, **strongest** limits to date on this model for this signature
 - First limits on higgsino χ^0 in AMSB using disappearing track signature
- More exciting results coming soon stay tuned!

Full list, CMS Exotica results

Backup

Displaced jets – 2016 analysis

Phys. Rev. D 99 (2019) 032011, arXiv: 18011:07991

- Overall analysis strategy very similar to 2017+2018 result
- Likelihood discriminant instead of BDT
- No NI veto map
- Expected $1.03 \pm 0.11 \pm 0.19$ events, observed 1 event
- For the jet-jet model, excluded cross sections as low as 0.15fb

Displaced jets – triggers

- Displaced trigger:
 - Calo HT > 430 GeV
 - at least two jets, each satisfying
 - pT > 40, η < 2.0
 - At most two prompt tracks $(IP_{2D} < 1 \text{ mm})$
 - At least one displaced track (IP $_{2D} > 0.5$ mm, IP $_{2D} / \sigma_{IP} > 5.0$)
- Inclusive trigger:
 - Calo HT > 650 GeV
 - at least two jets, each satisfying
 - $pT > 60, \eta < 2.0$
 - At most two prompt tracks $(IP_{2D} < 1 \text{ mm})$
 - No requirement on number of displaced tracks

Displaced jets - interpretations

- Analysis is sensitive to different final state topologies
- SV not required to contain tracks from both jets – could arise from a single displaced jet

Displaced jets – signal efficiencies

- Analysis optimized for simplified jet-jet model but performant for a range of models
- Inclusive to different long-lived models with different final state topologies

Displaced jets – systematic uncertainties

- Uncert. in background prediction taken as largest deviation found in cross-checks using additional ABCD regions: up to 52%
- Largest signal uncertainties come from the modeling of the vertexing and tracking

Table 3: Summary of the systematic uncertainties in signal yields.

Source	Uncertainties (%)	
Integrated luminosity	2.3 – 2.5	
Online $H_{\rm T}$ requirement	0 - 2	
Online jet $p_{\rm T}$ requirement	0 - 8	
Offline vertexing	4 - 15	
Track impact parameter modeling	8 - 18	
Jet energy scale	0 - 3	
PDF	4 - 6	
Primary vertex selection	8 - 15	
•		
Total	17 – 25	

Displaced jets – SM Higgs limits

- Exclude SM Higgs \rightarrow SS, S \rightarrow bbar at 10% branching fraction
 - Worse performance for decays to b quarks because tertiary vertices from b hadrons can be missed by SV reconstruction
- Exclude SM Higgs \rightarrow SS, S \rightarrow light quarks at 1% branching fraction

Disappearing tracks – uncertainties

• Signal uncertainties dominated by the statistical uncertainty in the ISR corrections

Table 3: Summary of the systematic uncertainties in the signal efficiencies. Each value listed is the average across all data-taking periods, all chargino masses and lifetimes considered, and wino and higgsino cases. The values given as a dash are negligible.

Lincortainty

Source	Uncertainty			
Source	$n_{\rm lay} = 4$	$n_{\rm lay} = 5$	$n_{\rm lay} \ge 6$	
Pileup	3.0%	3.3%	2.8%	
ISR	13%	13%	13%	
Trigger efficiency	1.1%	0.8%	0.4%	
Jet energy scale	0.6%	0.7%	1.6%	
Jet energy resolution	0.5%	0.5%	1.3%	
$p_{ m T}^{ m miss}$	0.3%	0.3%	0.4%	
$E_{\rm calo}^{\Delta R < 0.5}$	0.7%	0.7%	0.7%	
Missing inner hits	2.3%	1.0%	0.3%	
Missing middle hits	3.9%	5.1%	4.4%	
Missing outer hits	_	_	0.2%	
Reconstructed lepton veto efficiency	0.1%	0.1%	_	
Track reconstruction efficiency	2.3%	2.3%	2.3%	
Total	14%	15%	14%	

Disappearing tracks – event yields

• Each n_{lay} category in each period are treated as independent counting experiments

Table 4: Summary of the estimated backgrounds and the observation. The first and second uncertainties shown are the statistical and systematic contributions, respectively.

Data-taking period	$n_{\rm lay}$	Expected backgrounds			Observation
		Leptons	Spurious tracks	Total	C D S C I V d L O I I
2017	4	$1.4\pm0.9\pm0.2$	$10.9 \pm 0.7 \pm 4.7$	$12.2 \pm 1.1 \pm 4.7$	17
	5	$1.1\pm0.4\pm0.1$	$1.0\pm0.2\pm0.6$	$2.1\pm0.4\pm0.6$	4
	≥6	$6.7 \pm 1.1 \pm 0.7$	$0.04 \pm 0.04^{+0.08}_{-0.04}$	$6.7 \pm 1.1 \pm 0.7$	6
2018 A	4	$1.1^{+1.0}_{-0.6} \pm 0.1$	$6.2 \pm 0.5 \pm 3.5$	$7.3^{+1.1}_{-0.8} \pm 3.5$	5
	5	$0.2^{+0.6}_{-0.2} \pm 0.0$	$0.5\pm0.1\pm0.3$	$0.6^{+0.6}_{-0.2} \pm 0.3$	0
	≥6	$1.8^{+0.6}_{-0.5} \pm 0.2$	$0.04 \pm 0.04^{+0.06}_{-0.04}$	$1.8^{+0.6}_{-0.5} \pm 0.2$	2
2018 B	4	$0.0^{+0.8}_{-0.0}\pm0.0$	$10.3 \pm 0.6 \pm 5.4$	$10.3^{+1.0}_{-0.6} \pm 5.4$	11
	5	$0.4^{+0.7}_{-0.3}\pm0.1$	$0.6\pm0.2\pm0.3$	$1.0^{+0.7}_{-0.3} \pm 0.3$	2
	≥6	$5.7^{+1.2}_{-1.1} \pm 0.6$	$0.00^{+0.04}_{-0.00} \pm 0.00$	$5.7^{+1.2}_{-1.1} \pm 0.6$	1