Search for long-lived particles in LHCb

Marcin Kucharczyk on behalf of the LHCb collaboration

IFJ PAN, Krakow

Large Hadron Collider Physics

Paris, 25-30 May 2020

Outline

- LHCb general purpose forward experiment
- Search for long-lived particles decaying into jet pairs
- Search for long-lived particles decaying semileptonically
- Higgs lepton flavour violating decays
- Prospects for exotic searches at LHCb
- Conclusions

LHCb detector

[Int. J. Mod. Phys. A30 (2015) 1530022]

- single arm spectrometer fully instrumented in forward region → GPD in forward region
- designed to study CP violation in B, but also fixed target, heavy ion physics
- precision coverage unique for LHCb: $2 < \eta < 5$

- momentum resolution between 0.4% at 5 GeV to 0.6% at 100 GeV
- impact parameter resolution of 20 μ m for high- p_T tracks
- lifetime resolution: 0.2 ps for $\tau = 100$ ps
- muon ID efficiency: 97% with 1-3% $\mu \rightarrow \pi$ misidentification

[IJMPA 30 (2015) 1530022]

Higgs decays to long-lived particles

Dark sector Higgs portal

Hidden Valley sector

 2 Hidden Valley pions decaying to jet pairs

mSUGRA with R-parity violation

semi-leptonic decay to high
 p_T muon + jets

Long-lived particles decaying into jet pairs

[EPJ C77 (2017) 812]

LHCb Run 1 data

- 7 and 8 TeV \rightarrow 2 fb⁻¹
- simulation with Pythia 8

Single vertex with two jets

- to increase acceptance within LHCb detector
- access to $m_{nv} \in (25\text{-}50)$ GeV and $\tau \in (2\text{-}500)$ ps

Selection

- SV track mult. > 4, $R_{xy} > 0.4$ mm
- jet inputs selected by Particle Flow, IP_{tracks} > 2 mm
- jets with anti- k_T , R = 0.7, $p_T > 5$ GeV
- dijet alligned with the vector from PV to the displaced vertex
- material veto

Selection efficiency for signal typically 0.1 - 1%

Long-lived particles decaying into jet pairs

[EPJ C77 (2017) 812]

Signal yield from the fit to the dijet mass distribution

Signal → Gaussian with parameters from simulation

Background → dominated by QCD

- → displaced heavy flavor decays by Gaussian + exponential
- → small component for prompt SM dijets

Long-lived particles decaying into jet pairs

[EPJ C77 (2017) 812]

- no significant excess of signal in the data
- upper limits on the signal strength at 95% CL set and reweighted for multiple lifetime hypotheses
- limits on $(\sigma / \sigma^{SM}_{gg \to H}) \times BR(H \to \pi_{\nu} \pi_{\nu})$

$m_{\pi_{v}} = 43 \, \text{GeV}/c^{2}$ $m_{\pi_{v}} = 50 \, \text{GeV}/c^{2}$ LHCb * $m_{\pi_{\mathrm{v}}} = 35\,\mathrm{GeV}/c^2$ $\sqrt{s} = 7,8 \text{ TeV}$ $(\sigma/\sigma_{gg o H^0}^{ m SM})\cdot \mathcal{B}(\mathrm{H}^0)$ 1 10^{-1} 10^{-2} 10^{-3} 10^{-2} 10^{-1} $c\tau$ [m]

[LHCb-PAPER-2016-065]

Long-lived particles decaying semileptonically

[EPJ C77 (2017) 224]

LHCb Run 1 data

- 7 and 8 TeV \rightarrow 3 fb⁻¹
- simulation with Pythia 6 and 8

SV with high p_T muon track

- based on excellent SV reconstruction
- sensitivity range
 - → mass: 20-200 GeV
 - \rightarrow lifetime 5-100 ps

Selection

- \bullet SV track mult. > 4, m_{SV} > 4.5 GeV, R_{xy} > 0.55 mm
- muon $p_T > 12$ GeV, $IP_{muon} > 0.25$ mm
- jets with anti- k_T , R = 0.7, $p_T > 5$ GeV
- material veto

LLP production mechanisms

Multivariate analysis to further discriminate signal from background

Long-lived particles decaying semileptonically

[EPJ C77 (2017) 224]

Signal yield obtained by fitting the SV mass with shape of the signal component taken from simulation

→ several signal masses and lifetime tested

Background dominated by bb events

- → after multivariate filter, no simulated background survives
- → data-driven method adopted to determine the background templates

Long-lived particles decaying semileptonically

[EPJ C77 (2017) 224]

- no significant excess of signal in the data
 - → result interpreted in various models
 - → several masses and lifetime hypothesis tested
- 95% CL upper limits on cross sections

Higgs lepton flavour violating decays

[EPJ C78 (2018) 1008]

Search for LFV Higgs decay $H \rightarrow \mu T$

Lepton-flavour-violating decay of Higgslike particle may indicate the presence of unknown physics

- 4 decay channels (μ, e, h, 3-h) analysed
- search performed for masses from 45 to 195 GeV.
- ullet signature: prompt muon and displaced au
- minimal flight distance (IP) of reconstructed candidate
- 3 different selections based on m_H vs m_Z
- background dominated by QCD, $Z \rightarrow \tau \tau$, Vj

Dataset: 8 TeV, 2 fb⁻¹

Higgs lepton flavour violating decays

[EPJ C78 (2018) 1008]

No excess found!

Limits on $\sigma(gg \to H \to \mu\tau)$ set for different mass hypotheses

 \rightarrow for SM Higgs 95% CL limit on BR($H \rightarrow \mu \tau$) < 26%

Prospects for long-lived searches at LHCb

[arXiv:1808.08865]

- upgraded VELO with pixels and live readout
- new silicon strip detector, new scintillating fibre detector
- Particle ID: new optics, new photon detectors (multi-anode PM)
- calorimeters: reduce PMT gain and new electronics
- muon detector: new electronics and increased granularity
- upgraded trigger all in software
 - → no hardware trigger

Detector with higher granularity, increased DAQ performance

Prospects for long-lived searches at LHCb

[LHCb-CONF-2018-006]

Projected from Run 1, scaled to the upgrade luminosities, conservative assumptions

Long-lived particles decaying to jets

Long-lived particles with semileptonic decay

Conclusions

LHCb has an active program to search for beyond flavour physics

complementary phase space with respect to ATLAS and CMS

Search for Higgs exotic decays can be the portal for NP

- long-lived particles decaying semileptonically
 - → mSUGRA neutralino with RPV
- long-lived particles decaying into jets
 - → Hidden Valley v-pion
- LHCb can provide information on Lepton Flavour Violating Higgs decays

Strong potential in the upgraded experiment

- no bottleneck from hardware trigger
- higher luminosity