

Vertexing detectors and vertexing performance in Run 2 in ALICE

Mattia Faggin

Department of Physics and Astronomy "Galileo Galilei" University of Padova (Italy)

On behalf of the ALICE Collaboration

Outline

- ALICE experiment
 - 1. The ALICE detector in Run 2
 - 2. The **ITS** detector in Run 1 and 2
- Event reconstruction and vertexing
 - Heavy-flavour (HF) vertices
- Physics results
- ITS upgrade

The ALICE detector in Run 2

ITS 1 (ALICE exhibition)

3

Tracking detectors in the ALICE apparatus

Inner Tracking System (ITS) in Run 1 and 2

- Six cylindrical layers of silicon detectors:
 - i. Silicon **Pixel** Detector (SPD)
 - ii. Silicon **Drift** Detector (**SDD**)
 - iii. Silicon Strip Detector (SSD)
- Pseudo-rapidity coverage: $|\eta| < 0.9$
- High granularity detector to cope with thousands of tracks per unit of rapidity at mid-rapidity in heavy-ion collisions
- Simultaneous detection of > 10³ tracks
- Purposes:
 - 1. reconstruct secondary vertices of heavyflavour hadrons ($c\tau(\Lambda_c^+) = 60 \ \mu m$), separated from the primary vertex
 - 2. improve the tracking
 - 3. track and identify charged particles with $p_{\rm T} < 200 \ {\rm MeV}/c$

ALICE Coll. 2008 JINST 3 S08002

Layer	Туре	<i>r</i> [cm]	Thickness [% of X ₀]	Spatial precision $r\phi imes z \ [\mu m^2]$
1	Pixel	3.9	1.14	12 × 100
2	Pixel	7.6	1.14	12×100
3	Drift	15.0	1.13	35 × 25
4	Drift	23.9	1.25	35 × 25
5	Strip	38.0	0.83	20 × 830
6	Strip	43.0	0.86	20 × 830

Int. J. Mod. Phys. A 29 (2014) 1430044

Event reconstruction flow

Int. J. Mod. Phys. A 29 (2014) 1430044

A Large Ion Collider Experiment

Heavy-flavour vertex reconstruction

- Full reconstruction of hadronic final state
- Vertex position: minimization of distance among daughter tracks
- Straight-line approximation for tracks close to PV
 - → bias < 1 μ m for daughters of $p_{\rm T} \approx 0.5 \text{ GeV}/c \text{ of 3 mm-displaced}$ secondary vertices @ B = 0.5 T

ARDA-Note-2009-002

- Reconstruction of topological variables exploitable for signal extraction: decay length, pointing angle, ...
- Data-driven correction for the impact parameter to primary vertex in MC simulations
- Unbiased templates for impact parameter -based analyses
 PV = Primary Vertex

A Large Ion Collider Experiment

Physics results

... a non-exhaustive collection!

proton-proton (pp) collisions

lead-lead (Pb-Pb) collisions

Typical Pb-Pb collision in ALICE

- Huge track density in Pb-Pb collisions (several thousands in central events)
- Heavy-flavour analysis more challenging due to the huge combinatorial background

A Large Ion Collider Experiment

Heavy-flavour in the QGP

- ALICE main goal: study of quark-gluon plasma (QGP) in heavy-ion collisions
- Charm and beauty quarks produced before the QGP formation $(\tau_b \sim 0.02 < \tau_c \sim 0.07 < \tau_{QGP} < 0.1 1 \text{ fm}/c)$
- Heavy quarks traverse the QGP
- Unique and calibrated probe of QGP full evolution

- Comparison between the AA behaviour and the pp expectations
- Sensitive to in-medium parton energy loss, heavy-quark hadronization mechanisms and spatial diffusion coefficients at low $p_{\rm T}$

Beauty-decay electrons (b(\rightarrow c) \rightarrow *e*)

Beauty hadrons $c\tau \sim 500 \ \mu m$ Charm hadrons $c\tau < 300 \ \mu m$

 Beauty hadrons have longer lifetimes than charm hadrons and other electron sources
 → larger DCA (d₀ in the transverse plane) with respect to PV for decay products

- Monte Carlo templates of electron sources
- Fit to data to distinguish $b(\rightarrow c) \rightarrow e$ from other sources

$$\frac{\mathrm{d}^2 N}{\mathrm{d}\varphi \mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\pi} \frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} \left[1 + 2\sum_{n=1}^{\infty} (v_n (p_{\mathrm{T}}) \cos[n(\varphi - \Psi_n)] \right]$$
$$v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$$

More details in Chun-Lu Huang's talk "Recent results on heavy flavor in small and large systems from ALICE"

A Large Ion Collider Experiment

Prompt D, non-prompt D and background separation with machine learning tools \rightarrow exploiting different decay topologies, resolved thanks to the ALICE vertexing capabilities

ALI-PREL-33257

Hint of $R_{AA}^{D\leftarrow c} < R_{AA}^{D(\leftarrow c)\leftarrow b}$ at intermediate p_T \rightarrow comparison with theory: access to the medium properties

D⁰

B

More details in Alena Harlenderova's talk "Recent results on hard and rare probes from ALICE"

A Large Ion Collider Experiment

Heavy-flavour in the QGP... but not only!

- Competitive measurements also in pp collisions
- ALICE is the only LHC experiment able to measure the Λ_c^+ baryon down to $p_T = 1 \text{ GeV}/c$ at midrapidity
- Low p_T: region where the differences with hadronization models are the largest

More details in Alena Harlenderova's talk "Recent results on hard and rare probes from ALICE"

A Large Ion Collider Experiment

Heavy-flavour in the QGP... but not only!

- Competitive measurements also in pp collisions
- ALICE is the only LHC experiment able to measure the Λ_c^+ baryon down to $p_T = 1 \text{ GeV}/c$ at midrapidity
- Low p_T: region where the differences with hadronization models are the largest
- Charm baryon-over-meson ratio significantly higher than expectations from MC generators tuned to reproduce e^+e^- measurements
- Recent measurements that challenge the hadronization models

Non-prompt J/ ψ at mid-rapidity

• Measurement at mid-rapidity of non-prompt J/ψ complementary (rapidity coverage) to LHCb one

- ALICE
- Prompt $J/\psi \rightarrow e^+e^-$ distinguished from nonprompt ones exploiting the sizeable beauty hadron decay length
- Non-prompt J/ ψ fraction at mid-rapidity measured down to $p_T = 1 \text{ GeV}/c \rightarrow \text{lowest } p_T$ ever measured!

$^{3}_{\Lambda}$ H lifetime measurement

- Neutron stars (NS) equation of state (EOS) inhibits large masses due to hyperons $\rightarrow 2M_{\odot}$ NS observed \rightarrow "hyperon puzzle"
- ${}_{\Lambda}^{3}$ H lifetime τ is an experimental probe of hyperon-nucleon-nucleon (Y-N-N) interaction \rightarrow additional repulsion
- ${}^3_{\Lambda}H \rightarrow {}^3He \pi^-$ candidates reconstructed with the "V0 finder" technique
- ${}^{3}_{\Lambda}$ H signal measured from $m({}^{3}$ He $\pi^{-})$ distribution in different *ct* intervals
- $c\tau$ from exponential fit

Upgrade – ITS 2 (Run 3 and 4)

ITS 1 (ALICE exhibition)

ITS 2

Piotr Gasik <u>"ALICE upgrades"</u> Muon Forward Tracker (post-LS2): new Si-tracking detector designed to add vertexing capabilities to the MUON spectrometer (forward rapidity) A Large Ion Collider Experiment

LS2 upgrade – ITS 2

- Ready to be installed after LS2
- Layout
 - 7 layers (inner/middle/outer): 3/2/2
 - 192 staves (inner/middle/outer): 48/54/90
- 10 m^2 active silicon area, 12.6×10^9 pixels
- First <u>large scale</u> ALPIDE Monolitic Active Pixel Sensors detector
- HF vertexing improved \rightarrow uncertainties reduced at low $p_{\rm T}$

J. Phys. G 41 (2014) 087002

	ITS 1	ITS 2		
Distance to interaction point (mm)	39	22	\rightarrow	Closer to interaction point
X_0 (innermost layer) (%)	~1.14	~0.35	\rightarrow	Lower material budget
Pixel pitch (μ m ²)	50×425	27 × 29	\rightarrow	Improved granularity
Readout rate (kHz)	1	100	\rightarrow	Faster readout
Spatial resolution ($r\varphi \times z$) (μ m ²)	11×100	5×5	\rightarrow	Improved resolution

Conclusions

- Thanks to its vertexing capabilities, the ALICE experiment has been obtaining remarkable results in Run 2, especially in the heavy-flavour physics (... but not only!) in pp, p-Pb and Pb-Pb collisions
- Looking forward to the post-LS2 (LS3) data taking campaigns
 - \rightarrow improved performance for the ALICE detector
 - 1. Fabrizio Grosa, <u>"Physics perspectives for ALICE in Run 4"</u>
 - 2. Andrea Dainese, <u>"Highlights and perspectives from the ALICE</u> <u>experiment"</u>
 - 3. Piotr Gasik, <u>"ALICE upgrades"</u>
 - 4. ...

... a non-exhaustive list!

A Large Ion Collider Experiment

Thank you for your attention

A Large Ion Collider Experiment

Back-up

ALICE luminosity

System	Year(s)	$\sqrt{s_{ m NN}}$ (TeV)	L _{int}
	2010-2011	2.76	$\sim 75 \mu b^{-1}$
Pb-Pb	2015	5.02	$\sim 250 \mu b^{-1}$
	2018	5.02	$\sim 0.9 \mathrm{nb}^{-1}$
Xe-Xe	2017	5.44	~ 0.3µb ⁻¹
n Dh	2013	5.02	~ 15nb ⁻¹
р-Ро	2016	5.02, 8.16	$\sim 3 { m nb}^{-1}$, $\sim 25 { m nb}^{-1}$
	2009-2013	0.9, 2.76, 7, 8	$\sim 200 \mu b^{-1}, \sim$ 100nb ⁻¹ , ~ 1.5pb ⁻¹ , ~ 2.5pb ⁻¹
рр	2015, 2017	5.02	$\sim 1.3 {\rm pb}^{-1}$
	2016-2018	13	~ 59pb ⁻¹

ALICE

SPD, SDD and SSD

The ALICE Collaboration *et al* 2008 *JINST* **3** S08002

Silicon Pixel Detector (SPD)

- Unit: two dimensional matrix (ladder) of reverse-biased silicon detector diodes
- Operating with tracks densities of tens/cm²
- Key role for primary vertex and impact parameter measurement

Silicon Drift Detector (SDD)

- Produced from homogenous high-resistivity (3 k Ω cm) 300 μ m thick Neutron Transmutation Doped silicon
- Active area split in two drift regions
- Two out of the four dE/dx samples for PID in the ITS

Silicon Strip Detector (SSD)

- 300 μ m thick sensors with 768 strips on each side with a pitch of 95 μ m
- Material budget optimization by usage of Carbon Fibre Composite material for support in the active area → reduced multiple scattering
- Two out of the four dE/dx samples for PID in the ITS
- Crucial for ITS-TPC track matching

Event reconstruction flow

Heavy-flavour vertex reconstruction

Figure 29: Sketch of the three-body decay $D^+ \to K^- \pi^+ \pi^+$ with the illustration of the straight line approximation for one of the decay products. d is the distance between the secondary vertex and the tangent line. The reference system (x', y') represents the local coordinates of the tracking algorithm.

Heavy-flavour vertex reconstruction

Figure 30: $D^+ \rightarrow K^- \pi^+ \pi^+$ decay: distance between secondary vertex and the tangent line as a function of the transverse momentum of the particle, for decay lengths of 300 μ m (left panel) and 3000 μ m (right panel), with B = 0.5 T. See text for more details.

Data-driven correction of impact parameter in MC

	Mass (MeV/c ²)	<i>cτ</i> (cm)	Decay (B.R.)
K ⁰ _S	498	2.68	$K_{\rm S}^0 \to \pi^+ \pi^-$ (69.2 %)
Λ	1116	7.89	$\Lambda \rightarrow p\pi^-$ (63.9 %)

Eur. Phys. J. C 71, 1594 (2011)

- **V0 finder** for K_s^0 and Λ reconstruction
 - ✓ Selections of secondary tracks (large impact parameter w.r.t. primary vertex)
 - ✓ Combination of secondary tracks
 - ✓ V0 candidates: combinations with DCA < 0.5 cm
 - ✓ V0 vertex position: 3D minimization of DCA
 → in a line connecting the points of closest approach of the two tracks
 - → distance from tracks proportional to track parameter precision
 - ✓ V0 candidates accepted:
 - radius w.r.t. primary vertex from 0.2 cm to 100 cm
 - ➤ reconstructed momentum has to point to the primary vertex → cos $θ_p > 0.99$
 - TPC PID used to reduce the combinatorial background

DCA = Distance to Closest Approach between two tracks

Cascades

	Mass (MeV/c ²)	<i>cτ</i> (cm)	Decay (B.R.)
Ξ	1322	4.91	$\begin{array}{l} \Xi^- \to \Lambda \pi^- \\ (99.9 \ \%) \end{array}$
Ω^{-}	1672	2.46	$\Omega^- \to \Lambda K^- $ (67.8 %)

Eur. Phys. J. C 71, 1594 (2011)

- Ξ^- and Ω^- reconstructed as cascades
 - ✓ V0 finding without $\cos \theta_p$ requirement → V0 daughters do not have to point to primary vertex
 - V0 candidates selected around the V0 mass value and combined with all secondary tracks (bachelor) except the V0 daughters
 - ✓ Selection on bachelor impact parameter to reject primary particles → background reduction
 - ✓ V0-bachelor association if the DCA between the bachelor and V0 trajectory is less than 3 cm
 - ✓ Reconstructed cascade momentum has to point to the primary vertex → $\cos \theta_{\rm p} > 0.85$
 - ✓ TPC PID used to reduce the combinatorial background

DCA = Distance to Closest Approach between two tracks

A Large Ion Collider Experiment

- Ξ^- and Ω^- reconstructed as cascades
 - ✓ V0 finding + association with secondary track (bachelor)
 - ✓ Selections on V0 mass and bachelor impact parameter → background reduction
 - ✓ $\cos \theta_{\rm p} > 0.85 \rightarrow \text{cascade momentum}$ pointing to PV
- TPC PID used to reduce the combinatorial background

- **"V0 finder"** for K_s^0 and Λ reconstruction
 - ✓ Secondary track pairs with DCA < 0.5 cm
 - ✓ V0 vertex position distance from tracks ∝ track parameter precision → fiducial volume (radius ∈ [0.2, 100] cm)
 - ✓ $\cos \theta_{\rm p} > 0.99 \rightarrow$ momentum pointing to PV

	Mass (MeV/c ²)	<i>cτ</i> (cm)	Decay (B.R.) ^(*)
K ⁰ _S	498	2.68	$K_{S}^{0} \rightarrow \pi^{+}\pi^{-} (69.2 \%)$
Λ	1116	7.89	$\Lambda \rightarrow p\pi^- (63.9 \%)$
Ξ	1322	4.91	$\Xi^- \rightarrow \Lambda \pi^- (99.9 \%)$
Ω^{-}	1672	2.46	$\Omega^- \to \Lambda K^- \ (67.8 \ \%)$
$^{3}_{\Lambda}\text{H}$	2991	6.18 (average)	${}^{3}_{\Lambda}H \rightarrow {}^{3}He \pi^{-} (25 \%)$ <u>H. Kamada et al., Phys. Rev. C 57</u> (1998) 1595-1603

DCA = Distance to Closest Approach between two tracks PV = Primary Vertex

Hypertriton lifetime measurement in Pb-Pb

- Inner cores of neutron stars (NS): hyperon production favoured
- Resulting equation of state (EOS) inhibits large NS
 - $\rightarrow 2 M_{\odot}$ NS observed \rightarrow "hyperon puzzle"
- Models: additional repulsion from 3-body interactions
- ${}^{3}_{\Lambda}$ H lifetime τ is an experimental probe of hyperon-nucleon-nucleon (Y-N-N) interaction \rightarrow precise measurements are fundamental

- Data-driven method for f_{prompt} measurement
- Transverse-plane impact parameter (d_0) distribution fit with

$$F(d_0) = S \cdot \left[\left(1 - f_{\text{prompt}} \right) F^{\text{FD}}(d_0) + f_{\text{prompt}} F^{\text{prompt}}(d_0) \right] + B \cdot F^{\text{bkg}}(d_0)$$

- Results compatible with FONLL-based method
- Lower uncertainties for $4 < p_T < 24 \text{ GeV}/c$

Results in pp collisions at $\sqrt{s} = 5.02$ TeV: Eur. Phys. J. C 79, 388 (2019)

positive (scalar product) values only

Prompt – non-prompt J/ ψ separation

ALICE© | Vertexing detector and performance in Run2 | 25th May 2020 | Mattia Faggin 35

Prompt – non-prompt J/ ψ separation

- Maximization of 2D likelihood
- Invariant mass and pseudo-proper decay length (x) fitted simultaneously

- From fits: raw non-prompt fraction f'_B
- Non-prompt fraction f_B obtained after acceptance × efficiency correction (no polarization effects)

$$f_B = \left(1 - \frac{1 - f'_B}{f'_B} \cdot \frac{\langle A \times \text{eff} \rangle_B}{\langle A \times \text{eff} \rangle_{\text{prompt}}}\right)^{-1}$$

Prompt - non-prompt J/ ψ at mid-rapidity in pp

- Prompt $J/\psi \rightarrow e^+e^-$ distinguished from non-prompt ones exploiting the larger beauty displacement \rightarrow larger decay length
- Non-prompt J/ ψ fraction at mid-rapidity measured down to $p_T = 1 \text{ GeV}/c \rightarrow \text{lowest } p_T$ ever measured!
- Prompt non-prompt J/ ψ cross sections measured separately

→ smaller uncertainties and wider $p_{\rm T}$ -range covered at 13 TeV with respect to 7 TeV (<u>JHEP 11, 065 (2012)</u>)

 $\rightarrow p_{\rm T}$ -integrated value: extrapolation down to $p_{\rm T} = 0 \; {\rm GeV}/c$ exploiting FONLL

Prompt - non-prompt J/ ψ at mid-rapidity in pp

- Prompt $J/\psi \rightarrow e^+e^-$ distinguished from non-prompt ones exploiting the larger beauty displacement \rightarrow larger decay length
- Non-prompt J/ ψ fraction at mid-rapidity measured down to $p_T = 1 \text{ GeV}/c \rightarrow \text{lowest } p_T$ ever measured!
- Prompt non-prompt J/ ψ cross sections measured separately

→ smaller uncertainties and wider $p_{\rm T}$ -range covered at 13 TeV with respect to 7 TeV (<u>JHEP 11, 065 (2012)</u>)

 $\rightarrow p_{\rm T}$ -integrated value: extrapolation down to $p_{\rm T} = 0 \; {\rm GeV}/c$ exploiting FONLL

Prompt J/ ψ at mid-rapidity

• Measurement at mid-rapidity of prompt J/ ψ complementary to LHCb one

- Prompt $J/\psi \rightarrow e^+e^-$ distinguished from nonprompt ones exploiting the larger beauty displacement \rightarrow larger decay length
- Non-prompt J/ ψ fraction at mid-rapidity measured down to $p_T = 1 \text{ GeV}/c \rightarrow \underline{\text{lowest } p_T \text{ ever}}$ <u>measured!</u>

ALICE

• Measurement performed rescaling the non-prompt J/ ψ cross section to the $b\overline{b}$ one with FONLL

$$\frac{\mathrm{d}\sigma_{b\bar{b}}}{\mathrm{d}y}_{|y|<0.9} = \frac{\mathrm{d}\sigma_{b\bar{b}}^{\mathrm{FONLL}}}{\mathrm{d}y} \times \frac{\sigma_{J/\psi \leftarrow h_B}(p_{\mathrm{T}}^{J/\psi} > 1 \, \mathrm{GeV}/c \,, |y_{J/\psi}| < 0.9)}{\sigma_{J/\psi \leftarrow h_B}^{\mathrm{FONLL}}(p_{\mathrm{T}}^{J/\psi} > 1 \, \mathrm{GeV}/c \,, |y_{J/\psi}| < 0.9)}$$

• Measurement of $b\overline{b}$ cross section compatible with dielectron analyses

$$\frac{\mathrm{d}\sigma_{b\bar{b}}}{\mathrm{d}y}|_{|y|<0.9} = 67.12 \pm 7.55 \,(\mathrm{stat.}) \pm 9.89 \,(\mathrm{syst.})^{+0.74}_{-2.21} \,(\mathrm{extr.}) \,\mu\mathrm{b}$$

A Large Ion Collider Experiment

Λ, K_s^0 , Ξ, Ω

• Machine learning tools

 \rightarrow two-steps Boost-Decision-Trees (BDTs) to separate non-prompt D⁰ from background (prompt D⁰, combinatorial)

• Non-prompt fraction from template fit of the raw yield vs. BDT selection (*x*) value

 \rightarrow high non-prompt fraction at low $p_{\rm T} \Rightarrow$ low systematic uncertainties

- Measurement down to $p_{\rm T} = 1 \ {\rm GeV}/c$
- The measurement lies on the upper edge of the FONLL uncertainty band

Beauty via non-prompt D⁰ **production**

Beauty via non-prompt D^0 production

Upgrade – ITS 2 (Run 3 and 4)

- Layout
 - 7 layer (inner/middle/outer): 3/2/2
 - 192 staves (inner/middle/outer):
 48/54/90
- Based on ALPIDE Monolitic Active Pixel
 Sensors
- 100 m^2 active silicon area, 12.5×10^9 pixels

	ITS 1	ITS 2		
Distance to interaction point (mm)	39	22	\rightarrow	Closer to interaction point
X_0 (innermost layer) (%)	~1.14	~0.35	\rightarrow	Less material budget
Pixel pitch (μ m ²)	50×425	27 × 29	\rightarrow	Improved granularity
Readout rate (kHz)	1	100	\rightarrow	Faster readout
Spatial resolution ($r\varphi \times z$) (μ m ²)	11×100	5×5	\rightarrow	Improved resolution