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Introduction
• A good performance of the trackers is a key ingredient of the success of the physics program

• An accurate determination of the charged particles properties is necessary for 
• Momentum & impact parameter  
• Invariant masses have to be determined with precision  
• Secondary vertices must be fully reconstructed: evaluate short lifetimes 
• Others: Kink reconstruction, despairing tracks… 

• Challenges for the tracking systems of the LHC detectors
• Momenta of particles ranging from MeV to TeV 
• High multiplicity of charged particles (up to 1000 for ℒ ∽ 1034cm-2s-1) 

• Even higher for heavy ion collisions 
• Large background from secondary activities of the particles 
• Multiple Coulomb Scattering in detector frames, supports, cables, pipes... 
• Complex modular tracking systems  

• combining different detecting technologies, different resolutions 
• Varying detector resolutions  

• Radius, polar angle (θ) or pseudorapidity (η) 
• Very high event rates  

• large amount of data with demanding high requirements of: 
• CPU and storage 
• Tracking CPU budget
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Link to extra info

https://twiki.cern.ch/twiki/bin/view/CMSPublic/HLTDiMuon2017and2018
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Charged particles in the detector
• Outgoing particles leave different signatures in various sub-detectors  

• Muons: 
• Combined track in  inner tracker and muon spectrometer 

• Electrons:  
• Bremstrahlung corrected tracking and EM calorimeter deposit  

• Tracks in jets 
• Reconstructed in the inner tracker (EM/HAD calorimeter deposits) 
• High density of tracks 
• flavour tagging and hadronic taus identification  

• Photons:  
• No tracking 
• But track reconstruction for 𝛄 conversions
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ATLAS & CMS Tracking systems
• ATLAS: Inner Detector (ID)

• |η| < 2.5 & 2 T solenoid field 
• Pixel and IBL  

• 1744+280 modules 
• strips: SCT (double sided)  

• 4088 modules 
• Gas drift tubes: TRT (30 measurements)
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• The CMS tracker has a |η| < 3 coverage
• All silicon: |η| < 2.5 & 3.8 T solenoid field 
• Pixel (replaced in 2017. Phase 1) 

• 4 barrel layers & 3 end-cap disks 
• 1856 modules & 124M channels 

• Strips 
• 10 barrel layers (4 double sided) & 12 end-cap disks 
• 15,148 modules

Pixel Double sided Strips Single sided Strips

New Pixel 2017-2018

OLD Pixel —> 2016
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Track reconstruction
• From detector hits to tracks:

• Track reconstruction refers to the process of using the hits to obtain estimates for the momentum and position 
parameters of the charged particles 

• CMS: Combinatorial Track Finder (CTF) 
• Kalman filter for pattern recognition and track fitting 
• Track classification / selection is done using BDT trained for each step 
• Iterative process 

• initial iterations search for tracks that are easiest to find (large pT & near interaction region) 
• After each iteration, hits associated with tracks are removed (reduce combinatorics) 
• Further iterations:  

• search for more difficult classes of tracks (low-pT, or greatly displaced tracks) 

• Cellular Automaton
• Implemented to cope with the increase of luminosity  

•  triplet & quadruplet pixel track seeds 
• Parallelism, keep high efficiency and low fake rate 
• Avoid 𝒪(n3) combinatorics 

• pT and interaction region 
• Documentation: F. Pantaleo
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Seed generation 
Pixel, strips or mix 

using only a few                
(2 or 3 or 4) hits. 
Initial estimates

Track f inding 
Kalman f ilter. 

Extrapolation searching 
for additional hits

Track f itting 
Kalman f ilter & 

smoother. 
Best estimate of track 

parameters

Track selection 
Track quality 

requirements & 
compatibility with 
Interaction Region 

https://ediss.sub.uni-hamburg.de/volltexte/2018/9070/pdf/Dissertation.pdf
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Track reconstruction
• From detector hits to tracks
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Material
• The precise knowledge of the material traversed by the 

particles is a key ingredient for a performant (precise) track 
reconstruction

• The material affects the reconstruction of tracks through multiple 
scattering, energy loss, electron bremsstrahlung, photon 
conversions, and nuclear interactions  

• Previous material knowledge from the detector design
• Components & composition  
• Location of detector & ancillary elements 

• Beam pipe & supporting structures 
• Readout electronics 
• HV, LV cablesCooling pipes, etc 

• Secondary interactions help to map the material
• Hadronic interactions 
• Photon conversions
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Tracking in dense environments
• The tracking inside jet core becomes inefficient in high transverse momentum jets

• the collimated environment produces merged cluster from different tracks on the Pixel detector 
• Shared clusters → Separation of tracks inside jets can be smaller than pixel size 
• Tracks with many shared clusters → low quality & rejected 

• Recover performance with a NN approach
• separate clusters originating from single and multiple particles and to estimate hit positions within clusters
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Tracking efficiency
• CMS uses a tag and probe method

• Pions from D* →kππ decays 
• J/ψ & Z decays to µ+µ− 

• Tracker-only seeded collection 
• All-Tracks collection: 

• Tagged muons from the Muon System as seed 
for tracks in the inner tracker 

• ATLAS
• MC based 
• Efficiency study vs interactions per beam 

crossing 
• Loose & Tight tracks selection
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• CMS: the tracking efficiency and fake rate are 
measured in simulated ttbar events 

• Mean number of additional interactions: 50 

Tracking at HLT
• Tight trigger reduction rate required by the experiments
• A software trigger system requires a trade-off between the complexity of the algorithms, the 

sustainable output rate, and the selection efficiency
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• ATLAS: two-stage fast tracking
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Alignment
• Alignment is concerned with determining the actual geometry of the tracking system and following                                                                           

its eventual changes in time
• ATLAS and CMS use track based detector alignment

• Track-hit residual minimisation 
• Global𝞆2 
• MILLIPEDE and HipPy 

• Minimization → solve linear system with many degrees of freedom 
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Alignment
• Hierarchical approach:

• Proceed from large structures to individual modules 

• Detector stability and time dependent movements
• Short time scale movements and long term stability 
• Prompt alignment 
• Whole Run2 alignment → Legacy
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DMR BPIX 
Local-x
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Alignment
• Weak modes

• Track based alignment has low sensitivity to 
misalignments that may leave the track 𝞆2 
almost invariant 

• This may introduced biases in track 
parameters → Sagitta, scale or impact 
parameter biases 

• dedicated alignment campaigns 
• Validate with Z and J/ψ → µ+µ−, E/p 
• Example: sagitta biases 

• Detailed evaluation of sensors shape
• e.g. ATLAS IBL modules
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Z —> Mu+MU-
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Flavour tagging
• Identification of jets containing b- or c- hadrons is crucial for 

physics analysis (Higgs, top, SUSY…)
• Flavour-tagging relies on a variety of track related 

observables
• Impact parameter, secondary vertices, Particle ID (muons), jets, … 
• Use Machine Learning techniques to combine them into a single 

classifier 
• High Level Taggers 
• Algorithms and techniques are in constant evolution 

• Also the output classifiers
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Properties of jets containing b hadrons: 

High mass (~5 GeV)  
Long lifetime (1.5 ps) 
Large γcτ (few mm)  
Larger number of charged particles 

Leptonic decays (b ➙ μX 20%) 

[Courtesy of Xavier Coubez]

[Disclaimer: this is an example of CMS flavour tagger evolution. ATLAS flavour tagging also evolved with time]
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Flavour tagging
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[Courtesy of Xavier Coubez]

HLT  
B-jet trigger performance

ONLINE 
DISCRIMINATOR

LiNK TO  DOCUMENTATION

https://arxiv.org/pdf/1712.07158.pdf
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Flavour tagging
• High level taggers in ATLAS

• MV2 is a BDT based algorithm 
• DL1 is a ML-based algorithm 
• DL1r evolution using RNN 
• Recent developments 

• achieving factors of ~1000 in light jet rejection 
and good performance across a much broader 
pT range 

• Working points (e.g. εb = 77%) 
• Documentation: 

• Performance with 2019 calibration 
• Tagging efficiency, mis-tag rates…
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HLT documentation

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults#Trigger_b_tagging_hybrid_perform
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• ATLAS
• Tuning of the track selection aiming to keep 

efficiency high and low fake rate 
• Mixture Density Network (MDN) can estimate both hit 

position and associated uncertainty simultaneously 
• Low pT tracking

LHC Run 3 preparations: challenging pileup
• CMS: new seeding for tracks in high pT jets

• Developing a Convolutional NN (CNN) DeepCore 
• Goal: to improve the tracking performance by skipping the 

pixel clustering 
• Cellular Automaton 

• Produce the track-seeds directly from the raw pixel information 
of the four layers in the jet core region.  

• Track Classification via DNN

�17

TRAINING

0 100 200 300 400 500 600 700 800
 [MeV]

T
Truth Particle p

0

0.2

0.4

0.6

0.8

1

1.2

Ef
fic

ie
nc

y

 + default 
T

Low-p

Default alone

 Simulation PreliminaryATLAS
 RoI = 30mm

T
, Low-pµµ→ = 13 TeV, MC ZsRun 2, 



25/05/2020

Summary
• ATLAS & CMS Trackers are a key ingredient for the success of the 

LHC physics program
• Very efficient operations of the ATLAS & CMS trackers
• Tracking algorithms need to provide high-quality tracks efficiently and 

with an efficient use of resources. 
• Despite challenging conditions at the LHC in Run2 

• Tracking is in continuous development
• Using novel tools (NN, ML…) for conditioning the hits and the track seeds 
• Tracking efficiency from simulation and data-driven techniques 

• Detector alignment 
• Correcting short and long time scale movements 
• Crosschecks to avoid/mitigate weak modes (→ track parameter biases) 

• Flavour tagging techniques in continuous development
• Use ML techniques to combine the basic observables into classifier 

• Run 3 preparations to cope with higher data rates
• Pileup mitigation 

• Thanks to all tracking, alignment and flavour tagging teams of ATLAS 
& CMS

• Apologise for leaving some topics out
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Operation
• Efficient operation of both trackers during LHC Run 2
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