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Motivation for online/offline luminosity precision

* Online luminosity S with ~5% absolute accuracy is required for operating the accelerator and
the experiments (performance optimization, leveling, trigger optimization, etc.)

- Offline Lis required for precision cross section measurements. Current Run-2 per year
preliminary funcertainty is in the range of 1.6-3.4% (1.5-4.1%) for pp (Hl) across experiments.

® CMS/ATLAS: for leptonic Z, W, top decays ~1% uncertainty would make luminosity subleading among other well-controlled
systematics.

® ALICE: targets 2-3% uncertainty driven by precision measurement of diffractive, quarkonium and heavy-flavor cross-sections in
pp collisions, and vector meson photo-production in Pb-Pb collisions.

® LHCb: targets <2% uncertainty, motivated by the precise leptonic Z, W cross section measurements in the forward

acceptance.
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Luminosity measurement

- Luminosity (r ) is obtained from the observed rate in a detector (R)
and a calibration constant, called visible cross section (o . ):

Uncertainty due to detector £= R/lo Uncertainty due to calibration
vis

effects (running year) and corrections (vdM scans)

A 4

- Experiments use various counting methods to derive rate:
 ATLAS: e CMS:

* hit counting (= CMS zero counting)

*® coincidence counting

* track counting
® zero counting

* bunch-integrated particle flux in calorimeters

« LHCDb:

® track counting

* pixel cluster counting
*® transverse energy sum

®* muon counting

e ALICE:

* vertex counting

® transverse energy sum

o i _
®* muon counting coincidence counting
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Absolute calibration in vdM scan [ =R /o
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van der Meer scan method is used for luminosity calibration at the LHC.

- Special beam conditions to keep systematic effects low: moderate bunch population, large emittance,
large B*, no bunch trains.

- Visible interaction rate R is measured vs. separation to get effective beam overlap (Z ) Using bunch
currents (N, ,) the visible cross section (o, ) of the luminometer is calculated.

g Rpm k

r

- Multiple corrections applied to the rate and displacements. See reference tables
. . . . . of all systematic
- Some corrections, as non-factorization correction, applies to o _ directly. uncertainties
- Detector effects have to be taken into account (e.g. beam-induced background per experiment is the
correction, linearity). BACKUF.

As an alternative to vdM scans, LHCD is also using beam-gas imaging (BGIl) method.
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Beam-beam Correctlons
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Beam-beam deflection (orbit shift or dipolar effect)
Optical distortion (dynamic B or non-linear focusing effect)

The luminosity correction due to beam-beam effects is under
review:

Beam-beam corrections based on MADX (single particle
simulation) overestimate the correction;

MADX-based dynamic B estimate turned out significantly
biased by neglecting non-Gaussian distortions of the
transverse bunch shape. Correcting this will lead to order
of 1% shift in the delivered luminosity central value of
all experiments from the beam-beam correction alone.

Bias on the corrections due to elliptical shape of the beams
and fit model selection were quantified.

Dominant uncertainty is expected to be associated with
beam-beam-induced distortions of the tune spectrum:
- Tune shift due to head-on collisions at multiple IPs

estimated by multiparticle simulation for groups of bunches
colliding at 2,3 or 4 IPs

B*B and COMBI are new simulation codes for calculation of
beam-beam effects with possibility to include multiple IPs.

How beam-beam correction affects vdM curve?
- Optical distortion

“Displacement”

Beam-beam deflection correction

Quadrupolar (=linear) force approximation in MADX:
T T T T ‘ T T T T T ]
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Head on tune shift: Nominal LHC tunes

= (before collisions)
i Qx =031, Qy = 0.32

= Tune shift for bunches
colliding at one IP

Tune shift leads to extra systematic

uncertainty of up to 0.5%, which was not taken
into account before.



https://indico.cern.ch/event/813285/contributions/3406102/attachments/1854556/3045584/beam_beam_balagura.pdf
https://indico.cern.ch/event/813285/contributions/3406103/attachments/1856431/3049335/Lumi_days_Pieloni.pdf

Non-factorization: #(6.,6,) # f. (62) fy (6,)

- vdM scans along only X,Y axes relies on factorization of the proton densities: p(x,y) = p(x)p(y).
* Presence of non-factorization introduces bias in the measured beam overlap, differs per bunch, changes in time.
* Possibly can be minimized during preparation of the beams in the LHC injector chain (as Gaussian as possible beams).

- To quantify non-factorization of the beam (x-y correlations) multiple methods are employed:
- By ATLAS and ALICE: combined fit offset + on-axis scan and luminous region width vs. separation.

- By CMS: Beam imaging analyses, where the image of each beam obtained in X and Y using vertex information from
4 special scans and offset scans allowing for better understanding of the “tails” of VdM scans.

- By LHCb: beam-gas imaging.
- In 2017-18 LHCb pioneered 2D scans where the x-y corrections are not needed.

_ The most extreme non-factorization case in 2012 vdM scan:
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One of LHCb 2D scans:
with new ideas :
leap-frog symmetric + every
spiral side measure beam drifts

Fill 6864. Vertex: cross section estimated from u/N; /N, x (bin area), avel

» 2D scans do not require non-factorization
correction, as overlap integral is directly
measured.

* ATLAS and CMS consider also performing
2D scans in Run 3.
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https://indico.cern.ch/event/813285/contributions/3406097/attachments/1854560/3047143/Non_factorization_in_LHCb_2D_vdM_scans.pdf

Scan-to-scan variation

ATLAS: Gives 1.2% in 2017, 0.6% in 2018

g '_"'I""l""l""l"':"II:Q(.y'I""I_
E [ ATLAS <> e
3 — L. - > o —
< — Preliminary b - < G, — $
5 2814 Sgive ]
? _ pp, Vs=13TeV, 2017 <L 3 - &
£ 2654 R =
S 1943 [ LUCID BiHItOR = % —
@ - R 1w
1783 + Scanl o Sy i s
Sl o |
1032 * Scanll ;&j; 19
- Red
- g 5 —
161_9Scanv ’.’;.ﬁ_* «Lg ]
[ees e iy RS B } ﬁ;.&l....l_<

096 0.97 0.98 099 1 1.01 1.02
o, Normalised to the weighted mean

CMS: 0.9% in 2017, 0.3% in 2018

2680 CMS Preliminary 2017 ; EEEE EEEEE
— =
§ o {|| l” g
>§ 2640 | .’ }Im cl
¢lulﬂl i {} *|§
t%l 2600 Wim o mw }m l g

2580 >

BCID

LHCb: <1% across all years

Reference cross-section, pp, 13 TeV

Update of Lumi Days 08
64.00 2019 Ref[4], preliminary
. 06
g Fil
% 0.4 § ¢ 4269
S ¢ 4937
E = ® 6012
377 { 2016 , 5 ¢ 6864
) 2018 | § swoo
------------------------------------------------- oo 33 B
2015 {1 }
63.50 L + + + »
017 04

9 >
NP LY
) ) ) N

L Y

Fill and scan number

NI
B WY 5 A G
Al R N R
® & & & &

One of the leading systematic uncertainties in 2017.
- sub-leading in other years

The reason for discrepancy between scans in particular
VdM session is not clear, but confirmed by multiple
experiments. Possibly due to:

- time-dependent non-factorization effects

- hysteresis effects in closed-orbit bumps

- uncorrected orbit drifts


https://indico.cern.ch/event/813285/contributions/3406071/attachments/1854567/3047106/Overview_of_LHCb_luminosity_determination_methodology_in_Run_2_balagura.pdf

Luminosity uncertainty components

Normalization component Integration component

Calibration precision Stability and TOt?I :

(vdM) + linearity monitoring = Iumlnosllty
during the year uncertainty

Leading uncert.: Leading uncert.: N _
- non-factorization uncertainty - Long-term stability and cross-detector consistency

- Scan-to-scan reproducibility - For CMS, ATLAS linearity/calibration transfer (LHCb

- Beam-beam corr, operates at pileup ~1-2).
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.
Long-term stability and consistency

One of the leading systematic uncertainties across experiments:
+ Derived from the “stability band” in the ratio of multiple luminometers

The RMS difference from unity of the ratio is assigned Full stability band width is assigned as uncertainty.
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>. | Emittance scans for stability and linearity monitoring
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TLAS Calibration transfer & res

ponse in bunch trains
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https://indico.cern.ch/event/813285/contributions/3406055/attachments/1855434/3047316/ATLASIntroRH_20190604_v2.pdf

Compilation of Run 2 per year per experiment L uncertainty
Q New or updated results in bold

CMS ALICE LHCb ATLAS CMS ATLAS CMS ATLAS CMS

Year 2015 2016 2017 2018
o, /L [%] 21 2.3 3.4[T0] 3.9 2.2 2.5 24 2.3 2.0 25
Run 2 combined uncertainty at 13 TeV: Most of the results are preliminary and
-ATLAS 1.7% will be updated within a year or two.
- CMS 1.8%
QQ ALICE LHCb ATLAS CMS ALICE ATLAS
‘)«é Year 2015 2017
2.1[T0Q], 1.8 [TO],
0,
o, /L [%] 2.3[V0] 3.8 1.9 2.3 2.1[V0] 1.6

ATLAS ALICE  ATLAS CMS

Running 2015 2016 2018
Work is ongoing to propagate our period RBHD p-Pb (Pb-p) RBHD
best knowledge from the last year \/SNN [TeV] 5 TeV 8 TeV 5TeV
analysis to the previous years. 1.8[T0]
0 G )
s, /L [%] 1.5 2.0[VO] 2.4 3.7(3.2) 4.1




In lieu of summary: how can we reduce the uncertainty?

To reach 1% uncertainty we need to reduce not only leading, but also subleading contributions.
Only possible with collaborative work of experiments and LHC experts.

e 2D scans to be pursued in all experiments to reduce non-factorization systematics. Also: beam-gas imaging
at LHCb, combination of 1D measurements from all IPs.
Non-factorization can be much better understood combining measurements from all IPs.

* Reduce beam-beam correction uncertainty, per bunch LHC tune measurement in vdM scan.

 Improve long-term stability and cross-detector consistency introducing more techniques for fast (online)
detector performance monitoring.

« CMS/ATLAS: improve on linearity/calibration transfer via regular fast emittance scans and dedicated slow
M-scans, length scale scan with operations optics (B* = 25-30 cm).

Reducible subleading contributions to uncertainty. Required/goal LHC measurements precision:
« Bunch current product: 0.1-0.2%, ghost/satellites fraction meas. precision: at the level <0.05%
* Improved stability and ~1 um precision of beam position measurements at the IPs

Machine developments (MD) are required/supported by experiments:

* MD to measure vdM optics (CMS request: to reduce 15% uncertainty on 3*).

« MD to measure 3* and crossing angle early in the year during commissioning (for emittance scans)
« MD to measure hysteresis-induced non-linearity of the closed-orbit bumps

 MDs to validate beam-beam simulations

Run 3 is transition between LHC & HL-LHC. What is new and challenging P Beam 2
for Run 3? data N

* pileup leveling at ~60 (60% higher bunch charge)

* changing B* and crossing angle a/2 during the fill (3* 1 m -> 3* 25 cm,
a/2 110 prad -> 160 yrad)

Hardware upgrades: new luminometers (ALICE, CMS); new proposals in
LHCDb; re-build/upgrade of Run 2 luminometers (ATLAS, CMS, LHCDb).




ATLAS

ALICE EXPERIMENT

- Join your experiment lumi team!

. Contribute to the challenging task of reaching 1%
lumi uncertainty!

Contact me in vidyo: https://vidyoportal.cern.ch/join/tRgQeQsRHC
or e-mail olena.karacheban@cern.ch
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The most recent luminosity publications of the experiments

ALICE Collaboration:

ALICE luminosity determination for pp collisions at Vs = 8 TeV
(ALICE-PUBLIC-2017-002)

« ALICE luminosity determination for p-Pb collisions at \/s =816 TeV
(ALICE-PUBLIC-2018-002)

ALICE 2017 luminosity determination for pp collisions at Vs =5 TeV
(ALICE-PUBLIC-2018-014)

ATLAS Collaboration:

Luminosity determination in pp collisions at Vs = 13TeV using the ATLAS
detector at the LHC (ATLAS-CONF-2019-021)

Luminosity determination in pp collisions at Vs =8 TeV using the ATLAS
detector at the LHC (Eur. Phys. J. C76 (2016) 653)

Production of Y(nS) mesons in Pb+Pb and pp collisions at 5.02 TeV with
ATLAS (ATLAS-CONF-2019-054, p.8, 5 TeV 2017 ATLAS reference).

LHCb Collaboration:
Precision luminosity measurements at LHCb (JINST 9 (2014) P12005)

CMS Collaboration:

CMS luminosity measurement for the 2018 data-taking period at sV=13 TeV
(CMS-PAS-LUM-18-002)

CMS Luminosity Measurements for the 2017 data-taking period at sV=13 TeV
(CMS-PAS-LUM-17-004)
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Reference talks/links to approved results

- LHC Lumi Days, 4-5 June 2019 (https://lindico.cern.ch/event/813285/)

[1] V.Balagura, “Simulation of beam-beam effects in vdM scans: impact on
precision”

[2] T. Pieloni “Beam-beam simulations with COMBI & TRAIN in vdM fills”
[3] V.Balagura, “Non factorization at LHCDb : Two-dimensional vdM scans”

[Ré)l_l V.Ealagura, “Overview of LHCb luminosity determination methodology in
un ”

[5] R. Hawkings, “Overview of ATLAS Run-2 luminosity determination”

[I_g] MéGainardi, “Overview of ALICE luminosity-determination methodology in
un ”

W.Kozanecki “Manchester Particle Physics Seminar”

Manchester Particle Ph¥3|cs Seminars, Dec. 2019
http://indico.hep.manchester.ac.uk/conferenceDisplay. pv’?confld 5556

ATLAS all lumi results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

CMS all lumi results:
http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/L UM/index.html
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LHCDb

Cross-sections and known systematics (preliminary) @

pPp; 13 TeV pp; 5 TeV
o(Velo>1), mb 63.6 £+1.6 % 56.2+1.3 %
Early 2015 BGI measurement 63.4+3.9% (-0.3%off) 56.4+3.8% (+0.4% off)
preliminary BGI, fill 4937 65.8 + 2.1 % (+3.5 % off)
Error, % Error, %
PECTE 0.2 0.2
Ghost charge, BGI+LDM 0.0 0.3 (in fill 4634)
FBCT A/B/BPTX 0.0 0.0
LSC 0.3 0.3
Fit model 1.1 0.3
statistics 0.0 0.0
Scan-to-scan variations 0.9 1.0
RZ Velo - Velo diff. 0.1 0.1
Velo z-efficiency 0.0 0.0
X-Y non-factorizability (2D scans) 0.3 0.1
beam-beam 0.5 0.5

Beam-beam uncertainty is set to 0.5 % (correction +0.18 % / +0.15 % @ 13 and 5 TeV).
Orbit drifts have not yet been estimated, but expected to be small. 17

https://indico.cern.ch/event/813285/contributions/340607 1/attachments/1854567/3047106/
Overview_of LHCb luminosity determination_methodology in_Run_2 balagura.pdf
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LHCb Results

Method Absolute calibration Relative calibration Total
ovs (mb)  Weight Uncertainty (correlated) uncertainty uncertainty

pp at /s = 8TeV

BGI 60.62 £ 0.87  0.50 1.43% (0.59%)

VDM 60.63 +0.89  0.50 1.47% (0.65%)

Average 60.62 4 0.68 1.12% 0.31% 1.16%

pp at /s = 7TTeV

BGI 63.00 £2.22 0.13 3.52% (1.00%)

VDM 60.01 £1.03  0.87 1.71% (1.00%)

Average 60.40 £ 0.99 1.63% 0.53% 1.711%

pp at /s = 2.76 TeV

BGI o2.1 =+ 1.2 2.20% 0.25% 2.21%

pPb at /Syy = 5TeV

VDM 2126 + 49 2.05% 1.03% 2.29%

Pbp at \/syy = 5TeV

VDM 2120 + 53 2.36% 0.82% 2.50%

Preliminary result from Run II, BGI pp:

0, = 63.4 mb (3.9% precision) at 13 TeV and 56.4 mb (3.8% precision) at 5 TeV.
15

https://cds.cern.ch/record/2255091/files/LHCb-TALK-2017-034.pdf
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ALICE

Uncertainty pp 13 TeV 2015 pp 5 TeV 2015 p-Pb 8 TeV 2016 Pb-p 8 TeV 2016 pp 5 TeV 2017 pg::f;s
Non-factorisation 0.9% 1% 0.6% 0.9% 0.1%

Orbit drift 0.8% <0.1% 0.7% 0.3% 0.1%

Beam-beam deflection 0.8% 0.4% <0.1% 0.4% 0.5%

Dynamic B* 0.3% 0.2% <0.1% <0.1% 0.2%

Background 0.1% (T0), 0.7% (VO) | 0.3% (T0), 1.1% (VO) | <0.1% (T0), 0.5% (VO) | 0.3% (T0), 0.6% (VO) 0.2% (T0), 1.1% (VO)

Pile-up 0.7% 0.7% included in * included in * 0.5%

Length-scale calibration 0.5% 1% 0.5% 0.8% 0.2%

Fit model 0.6% 0.7% 0.5% (T0), 0.4% (VO) | 0.6% (T0), 0.9% (VO) 0.5%

% consistency (TO vs VO) 0.6% 0.2% 0.2% 0.4% <0.1%

Intensity decay 0.4% 0.7% 0.6% 0.7% 0.9%

Bunch-to-bunch consist. <0.1% <0.1% <0.1% <0.1% <0.1%

Scan-to-scan consist. <0.1% 0.5% 0.6% 0.1% 0.5% (T0), 0.4% (VO)

Beam centreing <0.1% 0.1% 0.1% 0.1% 0.2%

Bunch intensity 0.6% 0.4% 0.3% 0.3% 0.4%
e | g@kl | ow

Total 3.4% (T0) 2.1% (T0), 2.3% (VO) | 1.8% (T0), 1.9% (VO) | 1.8% (T0), 2.0% (V0) | 1.8% (T0), 2.1% (VO) | 5% (prel.)

M. Gagliardi — Overview of ALICE luminosity-determination methodology in Run 2 — LHC Lumi days 2019

https://indico.cern.ch/event/813285/contributions/3406066/attachments/1855528/3047512/

Gagliardi_LumiDays_040619.pdf

18
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AT L A S ATLAS-CONF-2019-021: https://cds.cern.ch/record/2677054

Uncertainties and combination

Per-year uncertainty summary Data sample 201516 2017 2018 | Comb.
rErT =1
Treating 2015+16 as one dataset Integrated lux.mnoslty_(lfb ) 36.2 44.3 58.5 | 139.0
] : Total uncertainty (fb™") 0.8 1.0 1.2 24
Absolute vdM calibration subtotal i certainty contributions (%):
+ ibuti ; i DCCT calibration' 0.2 02 02 | 01
Contrlbutlon's t.O to thSICS lumi. FBCT bunch-by-bunch fractions 0.1 0.1 0.1 0.1
Total uncertainties for individual Ghost-charge correction” 0.0 0.0 00 0.0
9 40 Satellite correction’ 0.0 00 00 | 00
years are 2.0-2.4%
: 3 Scan curve fit model' 0.5 04 05 0.4
LargeSt sungle uncertainty from Background subtraction 0.2 0.2 0.2 0.1
calibration transfer Orbit-drift correction 0.1 0.2 0.1 0.1
2 s Beam position jitter 0.3 03 02 | 02
Combination of years Beam-beam effects” 0.3 03 02 0.3
: : : Emittance growth correction” 0.2 0.2 0.2 0.2
Taklng correlations into account Non-factorization effects” 0.4 0.2 0.5 0.4
*/+=fully/partially correlated Length-scale ca}ibration 0.3 0.3 04 0.2
Y ID length scale 0.1 0.1 0.1 0.1
See talk of R. Hakags tomorrow Bunch-by-bunch o, consistency 0.2 0.2 0.4 0.2
., -1 Scan-to-scan reproducibility 0.5 1.2 0.6 0.5
TOtal run 2 Iuml' 1390124 fb Reference specific luminosity 0.2 0.2 0.4 0.2
Uncertainty 1.7%. dominated by Subtotal for absolute vdM calibration 1.1 1.5 1.2 -
librati t ; f : d th | Calibration transfer' 1.6 1.3 1.3 1.3
calibration transier an en long- Afterglow and beam-halo subtraction” 0.1 0.1 0.1 0.1
term stability Long-term stability 0.7 1.3 08 | 06
Tracking efficiency time-dependence 0.6 0.0 0.0 0.2
Total uncertainty (%) 2.1 24 20 1T
4th June 2019 Richard Hawkings 18

https://indico.cern.ch/event/813285/contributions/3406055/attachments/1855434/3047316/
ATLASIntroRH_20190604_v2.pdf
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A I L AS Sum of individual sources with uncertainties ¢, in each year (many separate
uncorrelated and correlated sources):

af 0 O 0’% 0102 0103
ATLAS-CONF-2019-021: Vi=| 0 o3 0 |[+| o102 03 o203 |+..
0 O og 0103 0903 ag
h . rn h r r 2 77 4 uncorrelated correlated

Some sources are not relevant in all years, so have some ¢,=0

Sources with both correlated and uncorrelated parts are handled by being broken

into two separate contributions to V
June 2019 Richard Hawkings 3

vdM uncertainty correlations

Separate vdM scan session in each year

‘Random’ uncertainties should be uncorrelated

‘Systematic’ uncertainties should be correlated — always have the same bias
Random/uncorrelated uncertainties

Bunch-to-bunch and scan-to-scan o, consistency

Reference specific luminosity (i.e. comparison of Z,, 2, from different algorithms)
All these fluctuate a lot from year to year, depending on quality/consistency of scan sets

Orbit drift corrections (depend on details of what happened in each scan session)
Background subtraction (dominated by statistical fluctuations, small, 0.2% / year)
Length scale calibration (independent calibration each year, orbit drift unc.)
Fully or partially correlated uncertainties
Non-factorisation — not really understood, likely same underlying cause each year
Beam-beam effects: common MADX-based calculation
Fit model — partially correlated
Different pairs of fit functions used to set error in 2016 and 2017+2018
Beam position jitter — correlated 2015-17 (from run-1), new evaluation for 2018
5th June 2019 Richard Hawkings 4

https://indico.cern.ch/event/813285/contributions/3406121/attachments/1856677/3049839/ATLASCombRH_20190605_v1.pdf
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.
Uncertainties tables CMS PAS

2017 data-taking 2018 data-taking
Systematic B [ Correction (%) | Uncertainty (%) Systematic Correction (%) | Uncertainty (%)
Length scale 0.9 0.3 Length scale —08 0.2
Orbit drift — 0.2 "Orbit drift _ 0.2 01
x-y correlations +0.8 0.8 -y m“facmmm"_‘ .0 20
Beam-beam deflection 116 04 g;“n';‘::? deflection _1('155 02
Normalization. | Uynmmic:5* - . T 0.5 Normalization | Beam current calibration 23 0.2
Beam current calibration - 0.3 Ot il 03 0T
Ghosts and satellites — 0.1 e kil — 03
Scan to scan variation — 0.9 Bunch to bunch variation — 0.1
Bunch to bunch variation — 0.1 Cross-detector consistency = 05
Cross-detector consistency 04-0.6 0.6 Background subtraction 0to08 01
éﬂﬂglz\:’ eg'lF) S5y = 0‘%6;’-3 Aferglow (HFOQ) Otod 01604
. ross-d Or stabr e . g Cross-detector stabili — 0.6
Integration Tinearity = 15 Integration Lincarity — = 11
CMS deadtime — 0.5 [CMS deadtime — <01
Total 23 Total 25
CMS-PAS-LUM-17-004 CMS-PAS-LUM-18-002
http://cds.cern.ch/record/2621960?In=en http://cds.cern.ch/record/2676164?In=en
Total delivered luminosity, full year (1/fb) 4.21 40.99 49.79 67.86 162.85 158.64
Recorded and certified luminosity, golden JSON (1/fb) 2.26* 35.92 41.53 59.74 139.45 137.19
Uncertainty (%) 2.3 25 2.3 25 1.8 1.8
Reference LUM-15-0017 LUM-17-0017 LUM-17-0047 LUM-18-0027 n/a n/a

* 25 ns fills with magnet on only


http://cds.cern.ch/record/2621960?ln=en
http://cds.cern.ch/record/2676164?ln=en

Z boson counting

 |s used for ATLAS/CMS stability and luminosity cross check

« As an alternative for luminosity measurement?

» Theoretical precision with NNLO+NLO predictions and latest pdf’s is
around 3-5%.

« Z—u+u- counting reaches 1% stat. precision every 20 minutes, with a
latency of several days in Run 2 (delay of prompt reconstruction). Can not
be used for online luminosity, where seconds/minutes latency is required.

» There is ongoing effort to probe possibility of precision luminosity
measurements at LHC with prospects to HL-LHC (arXiv:1806.02184).

Z ratio ATLAS CMS
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Date

e Zcount ratio « Lumiratio = accumulated lumi-weighted ratio ATLAS/CMS



Online luminosity and background measurement

28—-Nov-2015 20:29:37 Fill #: 4671 Energy: 6369 Z GeV

ATLAS ALICE
Experiment Status

Instantaneous Lumi [(b.s)/-1] 316.828 168.172
BRAN Luminosity [(b.s)"-1] 3136 307.0
Fill Luminosity (mb)A-1 16229.186 10892.304
Beam 1 BKGD = 0.010
Beam 2 BKGD n 0.001
LHCb VELO Position

Gap: -0.0 mm STABLE BEAMS

Performance over the last 24 Hrs

I(B1): 2.38e+12

I{(B2): 2.43e+12
CMS LHCb

Per-bunch luminosity
measurement opens a

new doorway to understanding
of our data:

255.447 62.660
268.3 1036.0
15815.537 3309.660
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| Luminometers Luminometers

- Forward calorimeter (HFOC and HFET)
- Fast Beam Conditions Monitor (BCM1F)
- Pixel Luminosity Telescope (PLT)

- Pixel Detector (cluster counting PCC)

- Muon system drift tubes (DT) and radiation protection
system (RAMSES) for integrated lumi stability

measurement (cross calibrated to one of the main

JINST 3 (2008) S08005

luminometers).

N\ e T e, . Mod. Phys. A 30 1530022

muon system

: pixel detector
[ 1

b e LHCDb vertex
= = locator
HF R HF
=====
» Vertex locator (VELO): N tracks,

HF wedge vertices, upstream hits, backward

36 wedges in tracks

total | + SPD preshower: N hits
\ Lo : \ - In + Calorimeters: transverse energy
Triple coincidence e SBA U«. L._,U ) * Muon system: N muons

counting (PLT), zero

counting (BCM1F) Zero counting (HFOC) and

transverse energy sum (HFET)



OATLAS Luminometers Luminometers

EXPERIMENT

‘ VoA VO-C,

FCAL

« Luminosity measurement using a Cherenkov * $W° TO_CI?I?renkov dete\cl;tor arrays [pp, p-Plﬂ‘;
integrating detector (LUCID): publishes b-b-b * Two scintillator arrays 0 on opposite side
integrated lumi over 60 s. and C [pp, p-Pb, Pb-Pb];

« Track counting is used for LUCID calibration transfer. * Neutron Zero Degree Calorimeters (ZDC)
* Beam Conditions Monitor (BCM) based on diamond [p-Pb, Ptf'Pb]: t_WO spaghetti calorimeters;
sensors. (Secondary, not used in 13TeV, only for cross  ° AL,IC!E diffractive (AD) detector [pp]: two

checks in HI running period.) scintillators.

Hit counting is used for luminosity measurement. Luminosity algorithms based on event counting.



Bunch current normalization. Ghosts & satellites.

2793
Satellite char > 1 ( -/ s = pma 2
ge subtracted j _ |FBCT sat j M nim sanss
from FBCT measurement = Npcer (1 - Ji ghost)
Lk Mpcr \
Calibration using ghost
subtracted DCCT
<]
2 ctin
: Magnitud® > e‘flfjs'
E dN‘ 201 0/ “
: pv _04
’ correction 1" 0.3%)
ncerta‘“

625 375 <128 ; 125 375 625
CERN-ATS-Note-2012-029 PERF ~ Time (ns)

- Total beam current is measured by Direct Current Current Transformers (DCCT): 0.2%
uncertainty, but too slow for per bunch crossing measurements.

- Per bunch crossing current is measured by Fast Beam Current Transformers (FBCT): fast,
but not the best precision, re-normalized to DCCT.

- Ghost and satellites fractions are measured by BSRL (Beam Synchrotron Radiation —
Longitudinal monitors).

* Requirements on bunch bunch current precision: 0.1-0.2% and on ghost (fh &) and
satellites fraction (f_,) measurement precision: at the level of <0.05%.



. »
Length scale calibration (CMS)

. . . . E% @ -beam 1
* Length scale calibration is a correction to 28 @ -beam 2
nominal beam separation derived using A 1
measured by CMS tracker vertex position. i Se€ 3 4 . oo’
[
* needed in the VdM scan, as beams are steered in - o °*% ee .2 s s '5 4 ° 0
the range wider than the range for normal operation 251 i 'I 2
(where magnets are calibrated).
 Contributions to uncertainty: orbit drift, Time
stability of the LHC magnet settings, and the
vertex reconstruction.
g
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CMS: correlations on the beam shape (X-Y)

- VdM method assumes factorization of the proton densities in X and Y

plane:  p(x,y) = p(x)p(y). /"769
Nyg
- To test non-factorization of the beam (x-y correlations) multiple c /o) UO'@ o
methods are employed by CMS: O"I'ec ) VCIM fe”.
- Beam Imaging analyses, where the image of each beam obtained in X and Y ‘Il)c floh 2077 eof ’
using vertex information from 4 special scans; Qe oY ,70 ~78. n
- Offset scans allowing for better understanding of the “tails” of VdM scans; n [0 ’7@ ~0 .
.8 .80
- Contributions to uncertainty: fit model, difference between toy ~200 /°/
Monte-Carlo simulation and true correction values, bunch-to-bunch %)
difference.
CMS Preliminary Fill 6868 (2018, 13 TeV)
g E Scan X1, BCID 265 : %
) ; 004 Super Double Gauss fit " a
Fill 6868, Scans #10 and #11, BCID=760, vs =13 TeV, PLT data - .01, = 13133
0.03 - 3
C o.ozf— i 2
0.0030 CMS Preliminary, 2018 w;_ 1
of— 0
—0.015— -1
-o.ozf— -2
—0.035— = -3
—0‘045— -4
":IllllIIIIlllllIIIIIllllllllll||l|l||l|||llllll|l| -5

-0.04 -0.03 -0.02 -0.01 0 0.01  0.02 0.03 0.04
x [cm]



Comparison of old beam-beam correction with new

Beam parameters from previous 2012 simulation for direct comparison w/ MADX

1.020 MADX, x scan - reference WH parameters 1.020 B*B, x scan - reference WH parameters
A A
1.010 1.010 A A A
% A A A A
A A A, A A A A 4
A ¢ 6 o o
Mt e g5, OO0 Thmge = e e RS
= -~
- oF o
<
0.990 0.990 o o ¢ °
~— MADX Dyn beta “oo0009®
m A B*B, optcl distortions only
0.980 —
MADX, full 0.980 o B*B, full
=== Orbit shift only I
=== Orbit shift only
0.970 -

200 0.970
0 20 40 60 80 100 120 140 160 180 200
Nominal horizontal separation [microns]

0 20 40 60 80 100 120 140 160 180
Nominal horizontal separation [microns)

Note: the cancellation between optical distortions orbit shift leads
to anticorrelations that will help cancel systematic errors

Black: new, red: old’2012 — large difference

| Old'2012 | new Jan'2019
o(bb)/o(nobb) —1 | -1.2% | -0.3%

W. Kozanecki 6 Dec 2019




Offset scans e

ALICE

B bunch from beam 1
B bunch from beam 2

1 2 3 1 5 6 7 8 9
Y
. ' ' ' B overlap region

— A

(1d) Offset vdM scan in y direction performed in 9 steps

= Powerful method to probe non-factorization

« Stat. uncertainties are larger (wrt on-axis scans) due to decrease of
the interaction rate

« ALICE: combined fit: offset + on-axis scans
(often bunch-averaged due to limited statistics)

=« ATLAS: combined fit with close-in-time on-axis scan
(always done bunch-by-bunch)

= Combination improves overall fit stability

M. Dyndal Non-factorization in ATLAS & ALICE vdM scans 5

https://indico.cern.ch/event/813285/contributions/3406094/attachments/1855833/3048867/
mdyndal_2019-06-05-lumiDays.pdf
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Emittance scans for non-linearity measurement

- Wide range of single bunch instantaneous luminosity (SBIL)
In physics fills allows for non-linearity measurement.

Fill 6362, Early emittance scan, Vs =13TeV Fill 6362, Late emittance scan, v's =13TeV Fill 6362, v's =13TeV
¢ Train ¢ Train 305 |
30l CMS Preliminary 2017 ¢ Leading || CMS Preliminary 2017 $ Leading CMS Preliminary 2017
295 300 Qi ‘
rsn '3‘ H 'E‘ 295
1 i 290 ¢ f i
- o Y Z 200 ]
S S S 8bde
285 f 518 b 285
g A —— Train (0.99733+3.4e-05)x + 288.9081+0.0012
} } i Lead (1.88455+0.00022)x + 282.1157+0.0087
280 e Trai
280| ] b Lead
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 1 2 3 4 5 6 7. 8 9 10
BCID BCID SBIL[Hz/ub)

- Non-linearity correction is extracted:
- per detector = self-consistent check
- per fill / per scan = early and late scans can be used separately (next slide)

- per bunch crossing = leading and train bunches have different evolution of
emittance and also show different linearity



Is non-linearity always the same?

CMS Preliminary 2018, Fill 7139, vs=13 TeV

CMS Preliminary 2018, Fill 6931, Vs=13 TeV CMS Preliminary 2018, Fill 6931, vs=13 TeV
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» Nonlinearity is different for each detector, but it stays constant during long period of time and
similar beam conditions.



%
Emittance scans for stability monitoring (2/2)

 |ess scatter in 2018 emittance scans

* more optimized beam conditions and more consistent filling scheme (in 2017 filling scheme was
changed several times).

* HF detector performance change was spotted from the first emittance scans in the
year in 2018 after the end of year technical stop (YETS)!

1.20 HFET Figure of Merit (Efficiency)
— elnitseans it ' CMS Preliminary 2018
— hcal ageing z 5
115} o) OIS STIDRPUUSUSNIS. (NI NU—— o
=
o
> 110
8
2
§ 1.05
g 2 : Radiation damage measured
VR )| SRS RN b RS SN o from emittance scans is
g I!
5 — slightly more pronounced
TE than predicted by HCAL
ageing model.
0.90 i i

40 60 80 100 120 140
Integrated Lumi [1/fb]



Corrections applied per bunch crossing

- Afterglow correction per Out of time response Single beam-beam
bunch Ccrossing: correction (afterglow) deflection per BCID
- afterglow type1 — fast T NS oy rrme ] B s memmima s
component and type 2 — slow ] j; m—
component from material T D -
activation. £ Foguniel g
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- Corrections to bunch current:

- -1% correction to FBCT current
of the fits bunch in the train;
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U-scans for cross-detector linearity comparison

- M-scans are similar to emittance scans, however often with equal steps in
SBIL and longer step duration for better statistics.

- Ratio of measured by two independent detectors luminosity (SBIL) in every
step of g-scan is the measure of cross-detector linearity. Additional cross
check for emittance scans method.

M-scan in fill 6854

Fill 6854, vs=13 TeV

CMS Preliminary 2018 (13 TeV)
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Example of impact of G, on SM precision tests: Comparison with other experiments

W & Z fi ducial cross-sections at /7 TeV Inelastic o scaled to LHCb “Vertex” lumi-counter acceptance using MC efficiency n,, ..
Ex ATLAS Collaboration, p-Pb cross-section at 5.02 TeV is scaled by A?. From | J. Instrum. 9 (2014) p12005_|
Eur. Phys. J.C 77 (2017) 367 : , i i
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Figure 19: Integrated fiducial cross sections times leptonic branching ratios of o', | . vs. ol | (left) and

WL ey VS 0., (right). The data ellipses illustrate the 68% CL coverage for the total uncertainties (full

green) and total excluding the luminosity uncertainty (open black). Theoretical predictions based on various PDF Most recent results 3

sets are shown with open symbols of different colours. The uncertainties of the theoretical calculations correspond (not plotted, 1.9% precision for 2012 data) ’ ATLAS: Eur. Phys. J. C 76 (2016) 653 |

to the PDF uncertainties only. ’ 16
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; 15Combined electron and muon channels using various PDFs.
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