LHCb: Real-time reconstruction, alignment and calibration in Run 3

Dorothea vom Bruch on behalf of the LHCb collaboration

8th LHCP, Paris

May 27th 2020

LHCb detector in Run 3

Outline

- LHCb trigger in Runs 1 & 2
- Change in trigger paradigm for Run 3
- High Level Trigger 1
- Alignment & calibration in real-time
- High Level Trigger 2
- Selective persistency

Run 1 & 2 trigger

Hardware trigger: based on muon detectors and calorimeters

Run 2

- Data buffered in between two software trigger stages
- Allows for real-time alignment and calibration
- Offline-quality reconstruction within the trigger

The MHz signal era

Run 3: Luminosity of $2x10^{33}$ cm⁻²s⁻¹, $\sqrt{s} = 14$ TeV

General purpose LHC experiments:

- Local characteristic signatures
 Signal rates up to ~100 kHz

 Hardware trigger possible
 - LHCb:
- No "simple" local criteria for selection Hardware trigger not an option
- Signal rates up to ~MHz
- Access as much information about the collision as early as possible
- Read out the full detector

Trigger only in software

- High Level Trigger 1 (HLT1):
 - Full charged particle track reconstruction
 - Few inclusive single and two-track selections
- High Level Trigger 2 (HLT2):
 - Aligned and calibrated detector
 - Offline-quality track reconstruction
 - Particle identification
 - Full track fit

Trigger only in software

High Level Trigger 1 (HLT1):

- Full charged particle track reconstruction
- Few inclusive single and two-track selections

High Level Trigger 2 (HLT2):

- Aligned and calibrated detector
- Offline-quality track reconstruction
- Particle identification
- Full track fit

Comparison to Run II trigger

- 5 x higher pileup
- 30 x higher rate into HLT1
- Disk buffer reduces from O(weeks) → O(days)
- Up to 10 x efficiency improvement for some physics channels

Huge computing challenge

LHCb HLT1 tasks

HLT1 on GPUs

Proposal in TDR (2014)

CERN-LHCC-2014-016

Updated strategy

Comput Softw Big Sci 4, 7 (2020)

HLT1 on GPUs

Proposal in TDR (2014)

CERN-LHCC-2014-016

Updated strategy

Comput Softw Big Sci 4, 7 (2020)

Why GPUs?

- Intrinsically parallel problem
- Sizeable code base for HLT1
- LHCb raw event size: 100 kB

Performance

- Process HLT1 @ 30 MHz on less than
 500 state of the art GPUs
- Physics performance superior to TDR

HLT1 physics performance

Muon identification efficiency				
One one of the first of the fir	Number of events [a.u.]			
* -				

Trigger	Rate [kHz]
1-Track	215 ± 18
2-Track	659 ± 31
$\operatorname{High-}p_T \operatorname{muon}$	5 ± 3
Displaced dimuon	74 ± 10
High-mass dimuon	134 ± 14
Total	999 ± 38

Online alignment & calibration

Journal of Physics: Conference Series, 664 (2015)

With PID

- Efficient and pure selections require offline-quality reconstruction at the HLT2 level
 - Better mass resolution
 - Better particle identification
 - Less background
 - → use output bandwidth more efficiently

Run 2: Real-time alignment & calibration

Run 2: Real-time alignment & calibration

Run 2: Real-time alignment & calibration

HLT2 on CPUs

Breakdown of the HLT2 throughput on an Intel Xeon E5-2630 node

- Fully aligned & calibrated detector
- Offline quality track fit & particle identification @ 1MHz
- Work ongoing to improve the throughput of HLT2
- Concentrated effort first on HLT1, now shifting towards HLT2
- Reduced bandwidth during the first year of data taking

LHCb-FIGURE-2020-007

Selection efficiencies

- Extensive usage of MVA based selections
- Ongoing studies on multivariate selections to select tracks generically coming from B and D decays (JINST 14 (2019) P04006)
- O(500) selections will be implemented
- Studies on bandwidth and efficiency for various decay channels ongoing

Selective persistency

Bandwidth [MB/s] ~ Trigger output rate [kHz] x average event size [kB]

- Trigger bandwidth is crucial, not trigger rate
- Real-time selection occurs with offline quality
- Only store high-level objects reconstructed in real-time
- Reduced event format → reduction of event size
 - → higher efficiency for same bandwidth
- "Turbo stream"

Selective persistency

IINST 14 (2019) P04006

19

Summary & Outlook

- MHz signal era leads to a change in trigger paradigm:
 - Reject background → select signal
 - Reduce rate → reduce bandwidth
- Read out full detector, do offline quality reconstruction in real time
- Partial reconstruction @ 30 MHz on GPUs
- Full reconstruction @ 1 MHz on CPUs
- Build on successful alignment & calibration in real-time during Run 2
- Store reduced event format, rather than full raw event

Current developments:

- Improve HLT2 computing performance
- Implementation of selections
- Get ready to commission the system

Backup

LHC schedule

CERN-LHCC-2018-027

Why no low level trigger?

Low level trigger on E_T from the calorimeter

Low level trigger on muon p_{T} , $B \rightarrow K^{*}\mu\mu$

Parallelization of reconstruction tasks

Store objects (for example hits) In best suited memory layout

Split problem into independent tasks

Example: primary vertex (PV) reconstruction

HLT1 rates & efficiencies

Trigger	Rate [kHz]
1-Track	215 ± 18
2-Track	659 ± 31
$\operatorname{High-}p_T \operatorname{muon}$	5 ± 3
Displaced dimuon	74 ± 10
High-mass dimuon	134 ± 14
Total	999 ± 38

Selection efficiencies, values given in %

Signal	GEC	TIS -OR- TOS	TOS	$\overline{\mathrm{GEC} \times \mathrm{TOS}}$
$B^0 \to K^{*0} \mu^+ \mu^-$	89 ± 2	91 ± 2	89 ± 2	79 ± 3
$B^0 \to K^{*0} e^+ e^-$	84 ± 3	69 ± 4	62 ± 4	52 ± 4
$B_s^0 o \phi \phi$	83 ± 3	76 ± 3	69 ± 3	57 ± 3
$D_s^+ \to K^+K^-\pi^+$	82 ± 4	59 ± 5	43 ± 5	35 ± 4
$Z \to \mu^+ \mu^-$	78 ± 1	99 ± 0	99 ± 0	77 ± 1

Evolution of HLT1 on CPUs throughput

Run 2 alignment & calibration

Task	Update	Sample	Data collection	Duration	When?
Velo alignment	Automatic	50k minbias + beamgas	< 1 min	2 min	Every fill
Tracker alignment	Automatic	100k D^0 → K π	< 1 min	7 min	Every fill
RICH mirror alignment	Automatic	3M good tracks	2 h	20 min	Every fill
Muon alignment	Expert	250k J/ $\psi \rightarrow \mu^+ \mu^-$	3 h	7 min	Every fill
OT t ₀ calibration	Automatic	Some minbias	15 min	O(min)	Every run
RICH Calibration	Automatic	Good tracks	15 min	O(min)	Every run
Relative CALO calibration	Automatic	LED monitoring system	N/A	2 min	Between fills
Absolute HCAL calibration	Expert	Caesium scan	N/A	2 hours	Technical stops
Absolute ECAL calibration	Automatic	300M minbias	O(4 weeks)	2 hours	When sample ready