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Need for fast shower simulation: Monte Carlo Production

Physics Analysis

Successful Physics program in ATLAS depends on the 
availability of  high statistics Monte Carlo simulated 

events 

Geant4 requires significant resources with ~75% 
spent in shower simulation i.e. Calorimeter simulation

The increased pileup at HL-LHC will also increase 
the CPU requirement for the same number of  hard 

scattered events 

Imperative to develop fast shower simulations compared to Geant4 
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Motivation for Fast Simulation

  

2010, “full” simulation with Geant4 (ref)Typical times in s: Grid usage 2016:

85% of the simulation time is spent in the calorimeters

EM showerEM shower

Wider, slower,
larger fluctuations
than EM showers

- Geant4 is slow, but most accurate. It is the ultimate reference for simulation

- ATLAS relies on fast simulation, even more in the future: The resources do not scale with our MC needs!

- Now ~50% of all MC events in ATLAS are fast simulated. But gains in speed come at the cost of accuracy.
  Ultimate goal is that fast simulation becomes so good, that it can be used for (almost) any process.

Simulation!arXiv:1005.4568
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Hadronic showerHadronic shower

ATLAS 2016 numbers
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Fast Simulation Strategies

2

Detector simulation in CMS

CMS fastsim details
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2.1. FastCaloSim
The FastCaloSim package provides a parameterised simulation of the particle energy response
and of the energy distribution in the ATLAS calorimeter, reducing the calorimeter simulation
time from several minutes to a few seconds per event. The fast simulation parameterisation
reproduces the longitudinal shower properties, including fluctuations and correlations, but only
average lateral shower properties and uncorrelated lateral energy fluctuations. FastCaloSim
is actively used for Monte-Carlo sample production in ATLAS as a part of ATLFASTII
configuration.

Currently work is ongoing on a new version of FastCaloSim, where advanced mathematical
techniques are used, such as Principal Component Analysis and TMVA neural network regression
analysis [5]. The new version promises improvements in jet substructure modelling, along with
improvements in speed, precision, and memory management.

2.2. Fatras
The Fast ATLAS Tracking Simulation (Fatras) [3] produces a Monte Carlo simulation based
on the software modules and the simplified geometry used by the standard ATLAS track
reconstruction algorithms. Fatras simplifies the layout description while at the same time
guaranteeing a fair amount of accuracy in the simulation. Instead of volumes, the detector
is described by thin layers on which the properties of detector volumes’ material are projected
(see figure 3). During the propagation through the detector, interactions with the detector
material are performed according to different particles types, modelled by fast algorithms. The
extrapolation tools sample the material effects from parametrised functions taking ionization,
bremsstrahlung photon emission, photon conversion, positron annihilation, multiple scattering
effects and hadronic interactions into account.

Figure 3. Visualization of the simplified
geometry used by the standard ATLAS
track reconstruction and Fatras, derived
from photon conversion vertices [3].

First estimates show that Fatras in conjunction with FastCaloSim (known as the
ATLFASTIIF configuration) could provide a reduction of simulation time of up to a factor
of 100 or more compared to full simulation with Geant4 [3]. Fatras is currently undergoing
physics validation.

ATLAS fastsim chain details

ATLAS/Other 
experiments 
similarly speed up 
with: 

- Simplified 
geometry 

- Parameteised 
calorimeter 
response 

- Approximations

https://indico.cern.ch/event/614935/contributions/2625507/attachments/1483588/2302216/SekmenLPCCDetSim1706.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/898/4/042016/pdf
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Calorimeter Simulations

• Simulate how particles interact with matter from 
first principles 

• Follow time evolution, even if only final image 
recorded

• Exponential cascade of particle showering ⇒ 
exponential time to simulate 

• Dominant part of simulation time
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The Longitudinal Energy Parametrisation 5 / 16

Energy deposit in each calorimeter layer along the shower axis and total energy

Problem: The energy deposits in the various layers are correlated with each other

Transformation to uncorrelated set of variables with principal component analysis, to reduce complexity

N Cumulative
distributions

G4 Inputs:
Energy fractions
Total energy
→ N inputs

N Gaussians PCA
PCA output data

N components

Inverse

error
function

1st PCA chain:

Example:
Photons 65 GeV

First principle component
is that eigenvector of the
covariance matrix with the
largest eigenvalue (variance)

N outputs

Cumulative

Output

Gaussian

TPrincipal
(reference)
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Cumulative
distributions

G4 Inputs:
Energy fractions f
Total energy
→ N inputs

Gaussians PCA
PCA output data

N components

Inverse

error
function

Bin 1

Bin 5

During simulation, this chain is performed back-wards:

● The leading principal component is used to divide the input
data into quantiles („PCA bins“)

● In each such bin, showers have similar features

● These “PCA bins” are also used to derive the shape
parametrisation.

● In each „PCA bin“, another PCA rotation is perfomed
to get even better decorrelation:

Gaussian
random
numbers

Inverse PCA
Uniform
numbers
[0,1]

Error

function

Inverse
Regression
Or Histogram

Inverse
PCA output
(Gaussians)

Simulated
Inputs

In each “PCA bin” a second PCA rotation is 
performed to further decorrelate
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ATLAS FastCaloSim

  

The Lateral Energy Parametrisation („Shape“) 8 / 16

● Shower shape:

- Most energies in the center (close to the shower axis)
- Energy tails extending perpendicular to the axis

● The shape parametrisation is based on Geant4 HITs.

- Close-by hits merged to reduce computation time
- Hits saved in ntuple format to be used to derive histograms

● These 2D histograms act as probability density functions during
the fast simulation: Fast sim hits are randomly sampled from it

● 2D histogram stored per layer
and per PCA bin

●  Spline and regression techniques
can be used to reduce memory

+ Energy Interpolation mechanism
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Validation: Photons
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• These two pieces form the backbone of FastCaloSimV2. We show here some validation plots


• Photon energy and shape variables agree very well with Geant4, matching the G4 mean to 
within 0.3 and 0.03 percent respectively

Results:

• Start with Geant4 simulations 
• Memory footprint: Efforts to efficiently 

store all parameterisation data

Thanks Sean Gasiorowski!

See details

https://cds.cern.ch/record/2626157/files/ATL-COM-SOFT-2018-080.pdf


6

Deep Generative Models for Fast Simulation

Aim: 

• Simulate showers 100-1000x faster than Geant4 
• Less human time intensive, higher accuracy than 

current fast simulation methods 
• Use less memory than current fast simulation methods  
• Take advantage of new technology: DL, GPUs, HPCs

How?
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Prominent Algorithms

Variational AutoEncoder (VAE): 
• Train encoder and decoder neural networks 
• Small (often Gaussuan) encoded latent space 
• Once trained, inject Gaussian random numbers into 

decoder to get new images
Enforce latent space to be gaussian 

distributed

La
te
nt

EncoderTarget		
Data

Decoder Reco		
Data
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GAN research moving towards better quality images  

Research on Deep Generative Models
(a) ALI [5] (64x64)

(b) Conditional PixelCNN [13] (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

see from this plot that the model converges quickly, just as was originally reported for EBGANs.
This seems to confirm the fast convergence property comes from pixel-wise losses.

4.5 Equilibrium for unbalanced networks

To test the robustness of the equilibrium balancing technique, we performed an experiment advan-
taging the discriminator over the generator, and vice versa. Figure 6 displays the results.

By maintaining the equilibrium the model remained stable and converged to meaningful results. The
image quality suffered as expected with low dimensionality of h due to the reduced capacity of the
discriminator. Surprisingly, reducing the dimensionality of z had relatively little effect on image
diversity or quality.

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)

7
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.

Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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But probability densities are another thing
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Depth-weighted total energy ld

FIG. 12: Comparison of shower shape variables, introduced in Table IV, and other variables of interest, such as the
sparsity level per layer, for the Geant4 and CaloGAN datasets for e
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structure is clearly visible, where most of the energy is lost in
the absorber.

Depth from Calorimeter Center [mm]
200− 150− 100− 50− 0 50 100 150 200

 d
ire

ct
io

n 
[m

m
]

η

200−

150−

100−

50−

0

50

100

150

200

C
el

l E
ne

rg
y 

[M
eV

]

0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

1000
-Geant4, Pb Absorber, lAr Gap, 10 GeV e

(b) Discretized version of (a), in which energy depositions are
assigned to individual, discrete detector cells.

FIG. 1: The electromagnetic shower from one 10 GeV
electron event. The boundaries of the cells are shown,

projecting out the � segmentation.

and the hypothesized image from the current layer, I,
and learns a per-pixel attention weight W via a weighting
function !(I, I

0
) such that the pre-ReLU version of the

current layer is W � I + (1 � W ) � I
0
, where � is the

Hadamard product. This end-to-end trainable unit can
utilize information about the two layers to decide what
information to propagate through from the previous par-
ticle deposition. An alternative architectural choice that
includes a recurrent connection will be subject of future
studies.

Leaky Rectified Linear Units [57] are chosen as activa-
tion functions throughout the system, with the exception
of the output layers of G, in which we prefer Rectified
Linear Units [58] for the creation of sparse samples [19].

In the discriminator (shown in Fig. 5), the feature
space produced by each LAGAN-style output stream is

η
z

φ

FIG. 2: Three-dimensional representation of a 10 GeV e
+

incident perpendicular to the center of the detector.
Not-to-scale separation among the longitudinal layers is

added for visualization purposes.

FIG. 3: Two-dimensional, per-layer representation of the
same shower as in Fig. 2.

augmented with a sub-differentiable version of sparsity
percentage [59], as well as minibatch discrimination [48]
on both the standard locally connected network-produced
features and the output sparsity itself, to ensure a well
examined space of sparsities. These are represented in
Fig. 5 by the ‘features’ vector.

The discriminator is further customized with domain-
specific features to ensure fidelity of samples. Given
the importance of matching the requested energy E, D
directly calculates the empirical energy per layer Êi, i 2
{0, 1, 2}, as well as the total energy Êtot. Minibatch
discrimination is performed on this vector of per-layer
energies to ensure a proper distributional understanding.
We also add |E�Êtot| as a feature, as well as I{|E�Êtot|>"}
with " = 5 GeV – a binary, sub-differentiable feature which
encodes the tolerance for GAN-produced scatterings to
be incorrect in their reconstructed energy.

Further specifications of the exact hyper-parameter
and architectural choices as well as software versioning
constraints are available in the source code [60].

Two additional architectural modifications were tested
in order to build a particle-type conditioning system di-
rectly into the learning process. Neither the AC-GAN [43]
nor the conditional GAN [44] frameworks were able to
handle the substantial differences among the three particle

9

CaloGAN

• CaloGAN showed that it is possible to simulate EM 
showers for a detector like ATLAS using GANs 

• Faster “Surrogate Model” trained on Geant4 
generated samples

1712.10321

CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer

Electromagnetic Calorimeters with Generative Adversarial Networks

Michela Paganini,1, 2, ⇤ Luke de Oliveira,2, † and Benjamin Nachman2, ‡

1
Department of Physics, Yale University, New Haven, CT 06520, USA
2
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

(Dated: January 1, 2018)

The precise modeling of subatomic particle interactions and propagation through matter is
paramount for the advancement of nuclear and particle physics searches and precision measurements.
The most computationally expensive step in the simulation pipeline of a typical experiment at the
Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that
govern the motion and evolution of particle showers inside calorimeters. We introduce CaloGAN, a
new fast simulation technique based on generative adversarial networks (GANs). We apply these
neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter,
and achieve speedup factors comparable to or better than existing full simulation techniques on
CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 105⇥). There are still challenges for achieving
precision across the entire phase space, but our solution can reproduce a variety of geometric shower
shape properties of photons, positrons and charged pions. This represents a significant stepping
stone toward a full neural network-based detector simulation that could save significant computing
time and enable many analyses now and in the future.

I. INTRODUCTION

The physics programs of all experiments based at the
LHC rely heavily on detailed simulation for all aspects
of event reconstruction and data analysis. Simulated
particle collisions, decays, and material interactions are
used to interpret the results of ongoing experiments and
estimate the performance of new ones, including detector
upgrades.

State-of-the-art simulations are able to precisely model
detector geometries and physical processes spanning dis-
tance scales as small as 10�20 m for the initial parton-
parton scattering, all the way to the material interactions
at meter length scales. These processes, which include
nuclear and atomic interactions, such as ionization, as
well as strong, weak, and electromagnetic processes, will
alter the state of incoming particles as they propagate
through and interact with layers of material in the vari-
ous detector components. Detection techniques such as
calorimetry exploit these physical interactions to detect
the presence and measure the energy of particles such as
photons, electrons and hadrons via their interactions with
hundreds of thousands of detector components. Upon
interaction with a calorimeter, a cascade (shower) of sec-
ondary particles is produced and their energy is collected
and transformed into electric signals.

Physics-based (full simulation) modeling of particle
showers in calorimeters (with Geant4 [1] as the state
of the art) is the most computationally demanding part
of the whole simulation process, and can take minutes
per event on modern, distributed high performance plat-
forms [2, 3]. The production of physics results is often

⇤ michela.paganini@yale.edu
† lukedeoliveira@lbl.gov
‡ bnachman@cern.ch

limited by the absence of adequate Monte Carlo (MC)
simulation, and the increase in luminosity at the LHC will
only exacerbate the problem. For example, the ATLAS
and CMS experiments at the high-luminosity phase of the
LHC (HL-LHC) will each see about 3 billion top quark
pair events [4–10]; for a MC statistical uncertainty that
is significantly below the data uncertainty, hundreds of
billion simulated events would be required. This is not
possible using full detector simulation techniques with
existing computing resources. Currently, full MC sim-
ulation occupies 50-70% of the experiments’ worldwide
computing resources, equivalent to billions of CPU hours
per year [11–13].

The relevance of the calorimeter simulation step has
sparked the development of approximate, fast simulation
solutions to mitigate its computational complexity. Fast
simulation techniques rely on parametrized showers [14–
16] for fluctuations, and look-up tables for low energy
interactions [17]. For many applications, these techniques
are sufficient. However, analyses that utilize the detailed
structure of showers for particle identification as well as
energy and direction calibration may not be able to rely
on these simplified approaches [18].

We introduce a Deep Learning model to enable high-
fidelity fast simulation of particle showers in electro-
magnetic calorimeters. Previous work [19] assessed the
viability of GAN-based simulation of jet-images [20] –
sparse, structured, 2D representations of jet fragmen-
tation analogous to a single-layer, idealized calorimeter
– and focused on providing architectural guidelines for
this regime. Neural network-based generation, including
GANs, Variational Auto-Encoders [21], and Adversarial
Auto-Encoders [22], have also been tested in other areas
of science, such as Cosmology [23, 24], Condensed Mat-
ter Physics [25], and Oncology [26]. The longitudinally
segmented calorimeter simulation addressed in this work
offers unique challenges due to the sparsity of hit cells,
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ATLAS Calorimeter Implementation
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GAN: comparison in Athena with G4

26/09/2019 Michele Faucci Giannelli 8

Fractional energy deposit in the φ direction for the second EM barrel layer for a 16 GeV (left), 25 GeV
(centre) and 32 GeV photon reconstructed cluster in the range 0.20 < |η| < 0.25. GAN (red solid line) is
compared to Geant4 (black dashed line). A revised architecture of the GAN, as compared to the one in ATL-
SOFT-PUB-2018-001, is used to generate the response. The revised architecture includes an additional
discriminator focusing on the total energy of a shower.

G
AN

16 GeV 25 GeV 32 GeV

GAN never trained at 25 GeV!

• Trained on calorimeter cells 
• Validated in ATLAS software, high level variables 
• Interpolates to untrained points 
• Happy with speed (orders of magnitude faster than Geant4) 
• Tiny memory footprint 

• Next: Expand to entire detector by training on cells voxels

Back Layer

Front Layer

Particle 
‘impact point’ 

in Middle 
Layer

Impact Cell

Details here here
VAE updates here

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/
http://www.apple.com
http://www.apple.com
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Photons: Rphi

26/09/2019 Michele Faucci Giannelli 7

Fractional energy deposit in the φ direction for the second EM barrel layer for a 65 GeV photon reconstructed
cluster in the range 0.20 < |η| < 0.25. The 3x3 and 3x7 refers to the rectangle of cells considered around the
cluster centre. FCSV2 (red solid line) is compared to Geant4 (black dashed line). FCS V2 has an improved
treatment of the parameterisation of the later shower with respect to ATL-SOFT-PUB-2018-002. The new
version of FCS V2 improved the treatment of cross-talk between cells.
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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Details here here
VAE updates here• Wasserstein GAN very popular flavour of GANs used in HEP 

(Applies Gradient Penalty on Discriminator to allow more 
meaningful feedback to generator) 

• WGAN has trouble with energy/mass distributions 
⇒ ATLAS solution: additional “Energy Critic Network” 
⇒ Other solution: MMD loss (see Anja Butter’s talk) 

• ATLAS VAE solve by training on energy ratios, HPO
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.

16

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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resolution of the simulated energy deposits.
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⇒ Other solution: MMD loss (see Anja Butter’s talk) 
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.

16

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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CMS Prototype High Granularity Calorimeter

arxiv:1807.01954 
• Trained on Geant4 simulation 
• Focus on positron induced showers 
• Reproduces distributions well 

• Trouble with hit energy spectrum (common 
problem of WGANs) 

• Move to test beam data

11.6 Application to Real Beam Test Data
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Figure 11.11: Event displays of fast simulated positron-induced electromagnetic showers inside
the 28-layer EE prototype calorimeter compartment. The generator network was trained with
showers from the O1E dataset.

in particular without any pre-training. All training and loss parameters are set identically to5275

the values in Section 11.3. The critic loss as well as the auxiliary losses converge successfully,5276

i.e. analogous to the demonstration in Figure 11.4. 150 epochs of the training with batch sizes5277

of 256 (1349 minimisation steps per epoch) last approximately two days on the aforementioned5278

GPU hardware. The network training was stopped just after 500 epochs to guarantee full con-5279

vergence of this framework.5280

Figure 11.11 shows randomly chosen event displays of WGAN-generated showers whose co-5281

ordinates are transformed back into the hexagonal grid. These images look reasonable in the5282

sense that the hit energy’s, the cell occupancy’s as well as the shower depth’s scaling with the5283

incident energy are apparent. In this application, the shower images are generated even up to5284

20,000 times faster with the generator than with full simulation using GEANT4, cf. Table 11.2.5285

Table 11.2: Computational time required for the generation of positron-induced cascades in the
EE compartment of the October 2018 configuration 1, cf. Figure 6.16a, through evaluation of the
generator compared to full simulation using GEANT4. Here, the generator structure has been
slightly modified with respect to the nominal one described in Table G.5.

GEANT4
(any CPU)

WGAN
Intel c� Xeon c� CPU E5-1620

WGAN
NVIDIA c� GTXTM 1080 GPU

20 GeV e+ 550 ms [x1] 10 ms [x55] 0.4 ms [x1375]
80 GeV e+ 2200 ms [x1] 10 ms [x220] 0.4 ms [x5500]
150 GeV e+ 4000 ms [x1] 10 ms [x400] 0.4 ms [x10000]
300 GeV e+ 8000 ms [x1] 10 ms [x800] 0.4 ms [x20000]

The core findings regarding the performance assessment are illustrated representatively for5286

150 GeV positrons in Figure 11.12. Therein, reconstructed observables are shown for the beam5287

test data, as well as for the WGAN-generated and GEANT4-simulated samples. It is indi-5288

cated that the generated showers, in fact, exhibit better agreement to the beam test data than5289

199

Thanks Thorben Quast!

https://arxiv.org/pdf/1807.01954.pdf


12

CMS Prototype High Granularity Calorimeter

 [MIPs]sum, allE
1000 2000 3000

1/
N

 d
N

/d
X 

[a
.u

.]

0

0.05

0.1

0.15

0.2
-Geant4, 32 GeV e
-Geant4, 70 GeV e
-Geant4, 90 GeV e

-WGAN, 32 GeV e
-WGAN, 70 GeV e
-WGAN, 90 GeV e

(a)
Shower depth [layer]

2.5 3 3.5 4 4.5 5

1/
N

 d
N

/d
X 

[a
.u

.]

0

0.02

0.04

0.06

-Geant4, 32 GeV e
-Geant4, 70 GeV e
-Geant4, 90 GeV e

-WGAN, 32 GeV e
-WGAN, 70 GeV e
-WGAN, 90 GeV e

(b)
, layer 2 [MIPs]maxE

100 200 300 400 500

1/
N

 d
N

/d
X 

[a
.u

.]

0

0.02

0.04

0.06

0.08

0.1

0.12 -Geant4, 32 GeV e
-Geant4, 70 GeV e
-Geant4, 90 GeV e

-WGAN, 32 GeV e
-WGAN, 70 GeV e
-WGAN, 90 GeV e

(c)

, layer 4 [MIPs]maxE
100 200 300 400 500

1/
N

 d
N

/d
X 

[a
.u

.]

0

0.02

0.04

0.06

0.08

0.1
-Geant4, 32 GeV e
-Geant4, 70 GeV e
-Geant4, 90 GeV e

-WGAN, 32 GeV e
-WGAN, 70 GeV e
-WGAN, 90 GeV e

(d)
 [indexes]layer 2 YΔ

0.4 0.6 0.8 1 1.2 1.4

1/
N

 d
N

/d
X 

[a
.u

.]

0

0.02

0.04

0.06

0.08 -Geant4, 90 GeV e
-Geant4, 70 GeV e
-Geant4, 32 GeV e

-WGAN, 90 GeV e
-WGAN, 70 GeV e
-WGAN, 32 GeV e

(e)
 [indexes]layer 4 YΔ

0.4 0.6 0.8 1 1.2 1.4
1/

N
 d

N
/d

X 
[a

.u
.]

0

0.02

0.04

0.06

0.08
-Geant4, 90 GeV e
-Geant4, 70 GeV e
-Geant4, 32 GeV e

-WGAN, 90 GeV e
-WGAN, 70 GeV e
-WGAN, 32 GeV e

(f)

Figure 7: Comparison of calorimeter observables computed in generated showers (symbols) to
those computed in fully simulated showers using GEANT4 (histograms). (a) Energy sum of all
pixels, (b) energy-weighted shower depth, (c, d) the maximum pixel energy in layer 2, respectively
4, and (e, f) the transverse shower spread along the y-direction in layer 2, respectively 4. The
70 GeV showers were not part of the training set.

A reasonable agreement between WGAN- and GEANT4-simulated showers is seen in Figure
7a for the total energy deposition summed over all pixels and in Figure 7b for the longitudinal
shower depth. Also, the maximum pixel energy for each individual layer exhibits a good match
with the full simulation (only layers 2 and 4 are shown in Figures 7c, 7d).
Furthermore, we compute the energy-weighted transverse spread in each layer.

�Yl =

layer l’
pixel i

��yi �
layer l’
pixel j

yj ·
Ej

Esum, l

�� · Ei

Esum, l
(4.1)

�Ylayer 2 and �Ylayer 4 are shown here (7e, 7f) by way of example. The computation for other layers l
and for the x coordinate is analogous. With the exception of the first layer at 2.8 X0, the agreement
therein is representative for all other layers and the x-coordinate. Thus the transverse shower shapes
are well-modeled by the WGAN.

In Figure 8b we investigate the energy spectrum of active pixels. The region of low energy
densities, i.e. pixels with depositions below ⇡ 10 MIPs, is underrepresented by the WGAN
with respect to GEANT4 causing a mismatch in the number of active pixels (energy � 2 MIPs)
in Figure 8a and ultimately also resulting in the underestimate of their energy sum (Figure 7a).
Similar mismodeling of sparsity-describing quantities has also been reported in the work based on
traditional GANs [6, 8]. It should be noted that the analysis of such fast simulated showers could
always be limited to the well-described range by restricting the analysis to pixels with energies
above 10 MIP equivalents. In this calorimeter setup, the rejected part of the spectrum contributes
only 10% to the total signal. This could be corrected by scale factors.

Following this principle, we conducted a supplementary performance benchmark. Example
graphics are shown in the appendix (Figures 10, 11). The agreement between the WGAN and
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v13_patch1

EE

(c)

WGAN - Fast Simulation 

300 GeV e+

v13_patch1

EE

Hit energy scale:
0.5 MIP 5 MIP 500 MIP50 MIP

(d)

Figure 11.11: Event displays of fast simulated positron-induced electromagnetic showers inside
the 28-layer EE prototype calorimeter compartment. The generator network was trained with
showers from the O1E dataset.

in particular without any pre-training. All training and loss parameters are set identically to5275

the values in Section 11.3. The critic loss as well as the auxiliary losses converge successfully,5276

i.e. analogous to the demonstration in Figure 11.4. 150 epochs of the training with batch sizes5277

of 256 (1349 minimisation steps per epoch) last approximately two days on the aforementioned5278

GPU hardware. The network training was stopped just after 500 epochs to guarantee full con-5279

vergence of this framework.5280

Figure 11.11 shows randomly chosen event displays of WGAN-generated showers whose co-5281

ordinates are transformed back into the hexagonal grid. These images look reasonable in the5282

sense that the hit energy’s, the cell occupancy’s as well as the shower depth’s scaling with the5283

incident energy are apparent. In this application, the shower images are generated even up to5284

20,000 times faster with the generator than with full simulation using GEANT4, cf. Table 11.2.5285

Table 11.2: Computational time required for the generation of positron-induced cascades in the
EE compartment of the October 2018 configuration 1, cf. Figure 6.16a, through evaluation of the
generator compared to full simulation using GEANT4. Here, the generator structure has been
slightly modified with respect to the nominal one described in Table G.5.

GEANT4
(any CPU)

WGAN
Intel c� Xeon c� CPU E5-1620

WGAN
NVIDIA c� GTXTM 1080 GPU

20 GeV e+ 550 ms [x1] 10 ms [x55] 0.4 ms [x1375]
80 GeV e+ 2200 ms [x1] 10 ms [x220] 0.4 ms [x5500]
150 GeV e+ 4000 ms [x1] 10 ms [x400] 0.4 ms [x10000]
300 GeV e+ 8000 ms [x1] 10 ms [x800] 0.4 ms [x20000]

The core findings regarding the performance assessment are illustrated representatively for5286

150 GeV positrons in Figure 11.12. Therein, reconstructed observables are shown for the beam5287

test data, as well as for the WGAN-generated and GEANT4-simulated samples. It is indi-5288

cated that the generated showers, in fact, exhibit better agreement to the beam test data than5289

199

Thanks Thorben Quast!

https://arxiv.org/pdf/1807.01954.pdf
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Beyond Geant: Learn directly from data (LHCb)

• Trained on calibrated data samples! 
• RICH is used for particle ID only 

• 5 probabilities for different ID hypotheses  
• 5 outputs RichDLL{k,p,μ,e,bt}  
• Conditioned on (p, 𝜂, # of tracks) 

• Discrepancies in particle ID efficiencies propagated as systematic 
uncertainties  

• Allows to avoid expensive RICH simulation with GEANT

arxiv:1905.11825

p

𝜼

Thanks Fedor Ratnikov!

https://arxiv.org/pdf/1905.11825.pdf
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ALICE: Time Projection Chamber 

See details

Table 1. Quality of conditional generative models, comparing to the GEANT3 simulation.

Method Mean MSE (mm) Median MSE (mm) speed-up

GEANT3 (current simulation) 1.20 1.12 1

Random (estimated ) 2500 2500 N/A

condLSTM GAN 2093.69 2070.32
102

condLSTM GAN+ 221.78 190.17

condDCGAN 795.08 738.71
25

condDCGAN+ 136.84 82.72

(a) condDCGAN (b) condDCGAN+ (c) condLSTM+

Figure 2. Exemplar results generated by different models (a) conditional DCGAN without additional
loss, (b) conditional DCGAN and (c) conditional LSTM GAN, with additional loss

We compare the results obtained with standard conditional GAN approach with those
generated with additional loss function (additional + sign by the name). There is no dif-
ference in architectures of enhanced and standard models therefore the observed speed-up
for generating new samples is equal. As denoted in table 1 there are visible problems with
condLSTM GAN training. Without additional loss, the generator could not learn well the
distribution of real data. Hence it produced almost random clusters. As listed in table 1,
the mean MSE is only slightly lower than for the randomly generated samples. However,
application of additional loss in condLSTM GAN+ model resulted in its better convergence
and made it possible to properly train the generator. The MSE error was therefore reduced to
around 200mm. As presented in Fig. 2(c) the generator well resolved the direction in which
the particle flew however, the simulated track is fuzzy what explains the high MSE value of
the model. Nevertheless the condLSTM GAN model is rather shallow, hence the observed
speed-up is significant and reaches 2 orders of magnitude.

When analysing the results obtained with convolutional conditional models, the standard
condDCGAN converges better then the LSTM based one. In evaluation conducted on the
testset we observed the median MSE value of 738.71 millimetres. As visible in Fig. 2(a) this
time there are also evident problems with track’s cohesion.

To improve the accuracy of results produced with condDCGAN model we applied ad-
ditional cost to the generator, which penalised it for creating clusters in some distance from
the original ones. Application of this idea in condDCGAN+ model reduced the median MSE
value to around 82.72 millimetres. Considering that the detector’s resolution reaches around
1 mm, the 8.3cm discrepancy is rather big. However, as presented in Fig. 2(b), for certain
type of data the two tracks – generated and original ones are almost identical, even though,
the generated clusters are not equal. We debate over this phenomenon later however, it may
suggest that the solution proposed in this work can be applied at least for some part of pro-

6

EPJ Web of Conferences 214, 06003 (2019) https://doi.org/10.1051/epjconf/201921406003
CHEP 2018

• Trained on TPC clusters 
• Validated using particle track properties 
• Uses GAN and VAE training losses simultaneously 

• 25x speedup on CPU 
• GAN does better on high Pt, straight tracks

(a) (b)

Figure 3. Mean MSE per particle’s perpendicular momentum pT . Grey area represents the first and
third quartile of MSE. (left) and Performance evaluation for conditional GAN models (right)

cessed data. The main reason for such an application is that condDCGAN is able to generate
results around 25 times faster than standard GEANT method.

Analysing the results obtained with best performing condDCGAN+ model, we discov-
ered that the greater the particle initial momentum is, the higher is the accuracy of cluster’s
position generated with generative model. It is especially visible when concerning momenta
perpendicular to the detectors axis dubbed pT . The results of the analysis are presented in
Fig. 3(a). It is known, that the greater the momentum, the straighter the particle track, hence
probably generative models evaluated in this work tend to produce straighter tracks with not
sufficient curvatures for particles with lower momenta.

Despite the precision of our methods, to emphasise their true potential we present the
execution times for different methods, while increasing the number of simulated clusters, i.e.
model outputs. Fig. 3(b) shows the results of this experiment. Although the computational
cost of all the methods increases linearly with the number of simulated detector responses, the
improvement achieved by the generative models is massive. It is worth mentioning that the
presented results refers to the execution on a single-core CPU, while additional hardware-
based speed-up of another order of magnitude was observed when using the GPU-based
implementation for the neural network methods. Although Monte Carlo simulations can also
benefit from such an acceleration, its iterative character result in much lower speed-up [27].

7 Summary

In this work, we demonstrated the potential of machine learning generative methods namely
conditional Generative Adversarial Networks for cluster simulation in the high-energy
physics experiments. We proved the possible application of those methods using the example
dataset generated for the TPC detector in the ALICE Experiment at LHC. We implemented
and evaluated several architectures, and compared their results in terms of quality and com-
putational cost. We also introduced the new training procedure which proved to provide more
precise results in faster way than the standard approaches. The quality of the best performing
method is not yet equal to the quality of currently used simulation methods. However, the
analysis of results revealed that proposed solutions can well reproduce the whole events while
maintaining the laws of physics. The most important advantage is that described methods are
much faster. The observed computational speed-up is unprecedented and reaches up to 102

when compared to the currently employed GEANT 3 simulation technique.
Understanding the limitations of proposed methods, we plan to extend our works to re-

duce the inaccuracy of generated examples. With increased accuracy we also plan to use the
presented models as a main component of the semi-real time anomaly detection tool.

7

EPJ Web of Conferences 214, 06003 (2019) https://doi.org/10.1051/epjconf/201921406003
CHEP 2018

CPU times

Thanks Kamil Rafal Deja!

(a) (b)

Figure 3. Mean MSE per particle’s perpendicular momentum pT . Grey area represents the first and
third quartile of MSE. (left) and Performance evaluation for conditional GAN models (right)

cessed data. The main reason for such an application is that condDCGAN is able to generate
results around 25 times faster than standard GEANT method.

Analysing the results obtained with best performing condDCGAN+ model, we discov-
ered that the greater the particle initial momentum is, the higher is the accuracy of cluster’s
position generated with generative model. It is especially visible when concerning momenta
perpendicular to the detectors axis dubbed pT . The results of the analysis are presented in
Fig. 3(a). It is known, that the greater the momentum, the straighter the particle track, hence
probably generative models evaluated in this work tend to produce straighter tracks with not
sufficient curvatures for particles with lower momenta.

Despite the precision of our methods, to emphasise their true potential we present the
execution times for different methods, while increasing the number of simulated clusters, i.e.
model outputs. Fig. 3(b) shows the results of this experiment. Although the computational
cost of all the methods increases linearly with the number of simulated detector responses, the
improvement achieved by the generative models is massive. It is worth mentioning that the
presented results refers to the execution on a single-core CPU, while additional hardware-
based speed-up of another order of magnitude was observed when using the GPU-based
implementation for the neural network methods. Although Monte Carlo simulations can also
benefit from such an acceleration, its iterative character result in much lower speed-up [27].

7 Summary

In this work, we demonstrated the potential of machine learning generative methods namely
conditional Generative Adversarial Networks for cluster simulation in the high-energy
physics experiments. We proved the possible application of those methods using the example
dataset generated for the TPC detector in the ALICE Experiment at LHC. We implemented
and evaluated several architectures, and compared their results in terms of quality and com-
putational cost. We also introduced the new training procedure which proved to provide more
precise results in faster way than the standard approaches. The quality of the best performing
method is not yet equal to the quality of currently used simulation methods. However, the
analysis of results revealed that proposed solutions can well reproduce the whole events while
maintaining the laws of physics. The most important advantage is that described methods are
much faster. The observed computational speed-up is unprecedented and reaches up to 102

when compared to the currently employed GEANT 3 simulation technique.
Understanding the limitations of proposed methods, we plan to extend our works to re-

duce the inaccuracy of generated examples. With increased accuracy we also plan to use the
presented models as a main component of the semi-real time anomaly detection tool.

7

EPJ Web of Conferences 214, 06003 (2019) https://doi.org/10.1051/epjconf/201921406003
CHEP 2018

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_06003.pdf
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Hybrid: Traditional + Generative Fast Sim (ATLAS)

The Problem with Pions

• Modeling shower shape with 
purely random fluctuation 
neglects correlations. For 
hadronic showers, these can be 
quite non-trivial. 


• Modeling these correlations well 
in FastCaloSim is important for 
e.g., modeling substructure


• Improving this modeling is one 
of the final major issues to be 
addressed for FastCaloSim
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Simulation Preliminary ATLAS

Photon 
Average

Photon 
Event/Avg.

Pion 
Average

Pion 
Event/Avg.

Energy ratios of single Geant4 events to 
their average shapes in a grid of 5x5 

calorimeter cells for EMB2

Photon event is 
very similar to 

average

Pion event is very 
different! Current 
shape simulation 

not sufficient

See details
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Shape Validation: 65 GeV Pions, very central
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No Correlated Fluctuations
With Gaussian Correlated Fluctuations
With VAE Correlated Fluctuations

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Distance from Shower Center
0

0.5

1

1.5

R
M

S 
/ G

4 
R

M
S

• We again see improvement for 65 
GeV pions, 0.05 < | | < 0.10 in 
EMB2


• The mean seems to be slightly 
biased for the VAE model

η

• Simulate showers using traditional parameterised algorithm 
• Add fluctuations with VAE

Differences beyond 0.08 can be covered by tuning the size of fluctuations in the current 
(uncorrelated) model

Thanks Sean Gasiorowski, Dalila Salamani!

ΔR

https://indico.cern.ch/event/809820/contributions/3632590/attachments/1970071/3276865/FCS_ML4Jets_2020.pdf
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Systematics / Considerations

Interesting discussion in 2002.06307

• Parameterisation based on Geant4 cannot beat Geant4 unless 

• Inject first principle assumptions 

• Train on / transfer learn specific features directly from data 

• Interpolate between training points (still indirectly limited by training set) 

• Statistical fluctuations of training set →  systematic fluctuations of GAN 
(Overtraining) 

• Smart compression: Trained on single particle showers but actual use in 
simulation of many kinds of events / processes 

• Don’t use for rare detector-induced fakes

• Cannot overcome systematic uncertainties with fast parameterised sim
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(a) Presampler
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(b) Front layer

(c) Middle layer (d) Back layer

Figure 11: Average energy deposition in the cells of the individual calorimeter layers as a function of the distance
in ⌘ from the impact point of the particles for photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The chosen bin widths correspond to the cell widths in each of the layers. The energy
depositions from a full detector simulation (black markers) are shown as reference and compared to the ones of a
VAE (solid red line) and a GAN (solid blue line). The shown error bars and the hatched bands indicate the statistical
uncertainty of the reference data and the synthesized samples, respectively. The underflow and overflow is included
in the first and last bin of each distribution, respectively. The showers simulated by Geant4 deposit on average
approximately 0.7 %, 17.2 %, 79.3 % and 0.4 % of the true photon energy in the presampler, front, middle and back
layer, respectively. The showers synthesized by the VAE (GAN) deposit on average approximately 0.6 % (0.8 %),
19.1 % (19.8 %), 77.6 % (78.1 %) and 0.6 % (0.5 %) of the true photon energy in the presampler, front, middle and
back layer, respectively.
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Sign of overtraining when trained on 4% of dataset

https://arxiv.org/abs/2002.06307
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Future

8

● Image	is generated according to:
○ Primary particle energy
○ Incident	angle

● Event	size	is 4x larger
● Networks	are	deeper (~1.2	M	parameters generator only)

A	more	realistic scenario
Larger images with incident angle 60° to 120°

200	GeV electron ,	60°incident	angle

1.5	Min/Epoch on	256	nodes
Time	to	Train	to	Accuracy:	3 hours

Weak scaling on Intel Endeavour cluster

GANs can take days to train, 3DGAN (CERN 
OpenLab) show impressive scaling with GPUs 

๏ Graph-GAN: use graph 
networks to generate sets of 
sensor hits in a graph 
structure 

๏ VAE with sparse Loss: use a 
variational autoencoder with 
a custom loss, designed to 
deal with sets of unordered 
items in some physical space 

๏ So far tested with sparse 
MNIST dataset: coordinates & 
intensity of subset of 
pixels i MNIST dataset 

๏ long term: use this strategy 
on jets and detector hits

Two approaches
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Figure 1: Top: A black-and-white image is converted into a list of pairs of numbers, representing the coordinates ~x
of the non-white pixels. Bottom: a gray-scale image is converted into a list of triplets of numbers. The first two rows
represent the coordinates ~x of the non-white pixels, while the last one gives the gray-scale value ↵.

The main difficulty to scale up these models to production-ready simulation tools lies in the complexity of a typical
HEP detector, characterized by detector elements with different technology and geometry, partially overlapping with
each other and with passive material (e.g., absorbers in calorimeters). Modern detectors are also characterized by high
granularity, with small-size sensors designed to resolve hits from individual particles in dense environments. As a
consequence of this, a typical HEP dataset consists of a sparse set of energy deposits, which often cannot be encoded in
a regular array as those produced by a CNN-based model. As an alternative to CNNs, the generation of reconstructed
final-state particles from a recurrent neural network (RNN) trained adversarially has also been considered [20].

In this paper, we investigate an alternative strategy to overcome difficulties with the use of CNN architectures. Rather
than moving to a different architecture, as done in Ref. [20], we reformulate the problem by introducing a novel loss
function, the nearest-neighbor distance (NND) loss name to be refined which is designed to deal with the intrinsic
sparsity of the reference data. At first, we use this loss function to train a VAE on the MNIST superpixels dataset [21].
Then we apply the same strategy to a simulated dataset of jets produced in proton-proton collisions like those occurring
at the LHC.

This paper is organized as follows: we introduce the near-neighbor MSE loss in Section 2. Results are show in
Sections 3 and 4, respectively for a toy example based on the MNIST superpixels dataset and for the LHC jet dataset.
Conclusions are given in Section 5.

2 Nearest-neighbor distance loss

We consider a sparse dataset as input, given as a list of objects, each characterized by a coordinate vector ~x and a feature
vector ~↵. We aim to define a loss function that evaluates the distance between two of these lists, considering both the
geometric distance between closest pairs and the difference between their corresponding features.

We start the discussion considering a simpler data representation: a set of input items, characterized by their coordinates
~x but without a corresponding ~↵ feature list. This could be a dataset of black-and-white images, in which white pixels
are ignored and the remaining pixels are represented as a list of (i, j) coordinates (see Fig. 1). This simple case is then
generalized to the case in which the elements of the input sets are also characterized by a vector of features ~↵, as for
instance for the pixel intensity in a gray-scale image (see Fig. 1).

Given two input sets A and B, each expressed in terms of the coordinate vectors ~XA and ~XB of the elements in the set,
we define the nearest-neighbor k-distance loss:

LNND
k ( ~XA, ~XB) =

X

i2A

min
j2B

Dk(~xi, ~xj) +
X

j2B

min
i2A

Dk(~xi, ~xj). (1)

2

Message Passing

Generator

Discriminator

Message Passing

{100 nodes

Real or Fake

{100 nodes
{3 features

Real 
or 

Fake

{Noise{100 nodes
{3 features

{100 nodes

Graph based Generative Models for sparse 
images

Geant4 team looking into generic fast sim 
approaches using generative models 

GAN Simulating CLIC calo

see details

Generative Models with Quantum ML 
(2005.08582)

https://indico.cern.ch/event/853334/contributions/3706456/attachments/1973668/3284005/3DGAN.pdf
https://indico.cern.ch/event/773049/contributions/3474752/attachments/1936869/3211036/Novel_Deep_Autoregressive_Networks_for_Fast_Simulation_Ioana_Ifrim_Keynote2.pdf
https://indico.cern.ch/event/853334/contributions/3656971/attachments/1973676/3284383/OpenLab_TechWorkshop_Jan2020.pdf
https://arxiv.org/pdf/2005.08582.pdf
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Beyond Detector Simulations

• Full event Simulation 
(more in Anja Butter’s talk!) 

• ML-assisted Phase Space sampling for MC 
(see Enrico Bothmann’s talk!)• Efficient Pile up simulation 

1912.02748 

New ideas keep coming in! 

https://arxiv.org/pdf/1912.02748.pdf
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Conclusion

• Dire need for improved fast simulation approaches to cope with growing CPU consumption of LHC experiments 

• Traditional methods of fast simulation maintained by all experiments: parameterised response, simplified geometry etc 

• Deep generative models of interest for : speed, accuracy, reduce human time investment, memory footprint 

• Detector specific losses, architectures 

• Hybrid approaches 

• Train on Geant4 or directly on data 

• Future: Expect more generative models in each LHC experiment, exciting new approaches and possibly general purpose 
architectures
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Backup

Zoom link for one-on-one chat (time 16:35-17:35):
-Removed-



RICH-GAN for LHCb
RICH detector is hard and expensive to simulate 

RICH is used for particle ID only 

‣ 5 probabilities for different ID hypotheses 

RICH response is probabilistic and driven by 
track kinematics and occupancy level 

‣ (p, 𝜂, # of tracks) 

Ideal setup for 3→5 conditional generative 
model 

‣ GAN trained on ID calibration datasamples

21
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Statistical distributions of ID variables are pretty close 

Precision of the generated response is evaluated for baseline 
selections 

Minor discrepancies are attributed as systematics  

This approach allows to exclude RICH from the GEANT 
simulation completely Thanks Fedor Ratnikov

mailto:Fedor.Ratnikov@cern.ch?subject=
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Add Physics Variables in Training

D

GX

Geant4 Data Generated Images
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Add Physics Variables in Training

D

GX

Calculate Physics Variable

Help the discriminator see physics

Geant4 Data Generated Images
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Add Physics Variables in Training

D

GX

Calculate Physics Variable

Help the discriminator see physics

Geant4 Data Generated Images

Exactly	zero	improvement 
Critic	can	learn	to	Σ,	but	gradient	penalty	prevents	using	it



Trade-Off b/w Distributions and Total Energy:
How to get the best of both?
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Trade-Off b/w Distributions and Total Energy:
How to get the best of both?
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“Train the Generator against a Critic of each type!”  
-Gilles Louppe
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New GAN Architecture
2 Critics 

Deeper Generator needed 

Trainable Swish activation for Generator  

Swish(x)=x⋅sigmoid(βx)

Input features = 1 + Conditional

Input features = 266 + ConditionalGP = 10

GP = 1e-8
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New GAN Architecture

Critic 
(GP = 10)

E Critic 
(GP = 1e-8)

Gen

Σ

GP: Two Sided Gradient Penalty

Gen Loss Ratio 
Critic : ECritic = 1 : 1e-6
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.

1.3
ATLAS SiPulatiRn 3reliPinary
γ, 0.20 < |η| < 0.25
χ2/ndf= 400 (9A()

Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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Energy Resolution

5From summer PubNote 2018

‘Energy’ is just the sum of 
energies in each cell 

It should be easy to have it 
correct ? :  NO !  

Tried training on single high 
energy point, 
Minibatch discrimination, 
various other tricks. No result.  

Critic can’t see the difference 
in real and fake images.

Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.

χ /ndf = 400 (9A()
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Energy Resolution

5From summer PubNote 2018

‘Energy’ is just the sum of 
energies in each cell 

It should be easy to have it 
correct ? :  NO !  

Tried training on single high 
energy point, 
Minibatch discrimination, 
various other tricks. No result.  

Critic can’t see the difference 
in real and fake images.
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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GAN: Improved Energy Resolution
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Other plots also very good

Reference

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/
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Integration of DNN into ATLAS (C++) Software

• Light Weight Trained Neural Network package built for fast inference in C++ framework: 
• Minimal dependencies 
• Avoid integrating heavy Tensorflow/PyTorch into software 
• Looking into ONNX runtime 

Performance (No GPUs, No Batch Parallelism): 
• Both DNNCaloSim, FastCaloSimV2 ~70ms ( vs ~10s for Geant4) 

• LWTNN takes <1 ms per shower, rest is overhead (being optimised) 
• DNNCaloSim memory footprint small

• 5 MB for LWTNN JSON file vs order GB for FastCaloSimV2 parameterisation file

Eigen based NN inference package for C++

Now	we	can	make	fair	comparisons

GAN as fast as it needs to be, tiny memory footprint

https://github.com/lwtnn/lwtnn
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Figure 1. Architecture for the codintional DCGAN model. Each block represent a network’s layer
with its size given above. Network is trained on two individual inputs – generated noise and particle
parameters

the detector, the minimal distance from the [0, 0, 0] point, where the trajectories are collected,
is 848 mm. The precision of the recorded coordinates is limited to the resolution of the TPC
read-out pads, which is between 0.8 to 1.2 mm, depending on the size of the pad [8]. For
normalisation purposes, the input data coordinates are scaled to fit the [0, 1] interval in each
dimension. We also apply other normalisation procedures, such as zero-padding the samples
for particle trajectories consisting less than 159 points (maximum number which can be reg-
istered by readout pads). Although additional characteristics of the particles can be observed,
e.g. its energy and speed, for the purpose of the evaluation presented in this work we restrict
our data samples to 3D coordinate values. Therefore we use the data with final resolution of
159 × 3 pixels. The initial noise inputted to the generator consisted of 100 random values.

After the collision occurs, up to few hundreds particle trajectories can be observed inside
the detector. Although we could attempt to simulate all of those trajectories at once using
generative models, we postulate to generate separate trajectories for individual particles first
and then merge them together to achieve the final goal. The highest reported resolution of
the output generated by GANs, is 1024 × 1024 [17],and it is relatively low, when compared
to the one observed in the TPC detector – 5000× 5000× 5000 possible clusters locations. To
circumvent this limitation, we transform our simulation problem into a so-called transactional
form and simulate individual points with their (x, y, z) coordinates, which we can then link
together to form a full trajectory.

5 Architectures
The general framework of Generative Adversarial Networks is rather flexible in terms of the
type and number of layers used as a generator and discriminator. Hence, we propose several
architectures that fit to the context of simulating detector’s response in a high-energy physics
experiment, with respect to the dataset described above.

• Conditional Deep Convolutional Generative Adversarial Network (condDC-
GAN):multi layered network, with two dimensional convolutional/de-convolutional layers,
that employs initial particles information, as shown in Fig. 1.

• Conditional LSTM based Generative Adversarial Network (condLSTMGAN): multi
layered recurrent network which uses LSTM units to process recursive data.

5.1 Conditional Generative Adversarial Network with additional loss

To enhance the quality of the samples generated with conditional GAN, as well as to prevent
the mode collapse we propose the new training procedure, which derives from both Genera-
tive Adversarial Networks and Variational Autoencoders. The idea is to train the generator to
generate new samples based only on the parameters selected from the training data. It allows
to compare generated samples with the original ones in the same manner as in autoencoder.
However, to ensure the non-deterministic behaviour of the model, we propose to combine
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ALICE DCGAN

Table 1. Quality of conditional generative models, comparing to the GEANT3 simulation.

Method Mean MSE (mm) Median MSE (mm) speed-up

GEANT3 (current simulation) 1.20 1.12 1

Random (estimated ) 2500 2500 N/A

condLSTM GAN 2093.69 2070.32
102

condLSTM GAN+ 221.78 190.17

condDCGAN 795.08 738.71
25

condDCGAN+ 136.84 82.72

(a) condDCGAN (b) condDCGAN+ (c) condLSTM+

Figure 2. Exemplar results generated by different models (a) conditional DCGAN without additional
loss, (b) conditional DCGAN and (c) conditional LSTM GAN, with additional loss

We compare the results obtained with standard conditional GAN approach with those
generated with additional loss function (additional + sign by the name). There is no dif-
ference in architectures of enhanced and standard models therefore the observed speed-up
for generating new samples is equal. As denoted in table 1 there are visible problems with
condLSTM GAN training. Without additional loss, the generator could not learn well the
distribution of real data. Hence it produced almost random clusters. As listed in table 1,
the mean MSE is only slightly lower than for the randomly generated samples. However,
application of additional loss in condLSTM GAN+ model resulted in its better convergence
and made it possible to properly train the generator. The MSE error was therefore reduced to
around 200mm. As presented in Fig. 2(c) the generator well resolved the direction in which
the particle flew however, the simulated track is fuzzy what explains the high MSE value of
the model. Nevertheless the condLSTM GAN model is rather shallow, hence the observed
speed-up is significant and reaches 2 orders of magnitude.

When analysing the results obtained with convolutional conditional models, the standard
condDCGAN converges better then the LSTM based one. In evaluation conducted on the
testset we observed the median MSE value of 738.71 millimetres. As visible in Fig. 2(a) this
time there are also evident problems with track’s cohesion.

To improve the accuracy of results produced with condDCGAN model we applied ad-
ditional cost to the generator, which penalised it for creating clusters in some distance from
the original ones. Application of this idea in condDCGAN+ model reduced the median MSE
value to around 82.72 millimetres. Considering that the detector’s resolution reaches around
1 mm, the 8.3cm discrepancy is rather big. However, as presented in Fig. 2(b), for certain
type of data the two tracks – generated and original ones are almost identical, even though,
the generated clusters are not equal. We debate over this phenomenon later however, it may
suggest that the solution proposed in this work can be applied at least for some part of pro-
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LHCb GAN

Crammer GAN: 
Width 128 
Depth 10 
Activation ReLU 
Latent Space 64 
Discriminator Output 256
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CMS GAN

1 Generator  
1 Discriminator 

Trained only on Geant4: 
1 Constrainer Network for Energy 
1 Constrainer Network for Impact Position 
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CaloGAN5

FIG. 4: Composite Generator, illustrating three stream with attentional layer-to-layer dependence.

FIG. 5: Composite Discriminator, depicting additional domain specific expressions included in the final feature space.

5

FIG. 4: Composite Generator, illustrating three stream with attentional layer-to-layer dependence.

FIG. 5: Composite Discriminator, depicting additional domain specific expressions included in the final feature space.

image is critical, and when the system needs to be end-to-end di↵erentiable, as opposed to requiring
hard attention. Examples of such applications, in addition to the field of High Energy Physics, could
include medical imaging, geological data, electron microscopy, etc. The characteristics of a LAGAN
can be summarized as follows:

• Locally Connected Layers - or any attentional component where we can attend to location
specific features - to be used in the generator and the discriminator

• Rectified Linear Units in the last layer to induce sparsity

• Batch normalization, as also recommended in [7], to help with weight initialization and gra-
dient stability

• Minibatch discrimination[4], which experimentally was found to be crucial in modeling both
the high dynamic range and the high levels of sparsity

4.1 Architecture Details, Implementation, and Training

Figure 4: LAGAN architecture

A diagram of the architecture is available in Fig. 4.
We utilize low-dimensional vectors z 2 R200 as our latent space, where, z ⇠ N (0, I), with final

generated outputs occupying R25⇥25
�0 .

– 6 –
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MMD Loss

SciPost Phys. 7, 075 (2019)

Generator{r}, {m} {xG} {xT } MC Data

DiscriminatorMMD2

LG LD

Figure 3: Schematic diagram for our GAN. The input {r} and {m} describe a batch of
random numbers and the masses of the external particles, and {x} denotes a batch
of phase space points sampled either from the generator or the true data. The blue
(red) and arrows indicate which connections are used in the training of the generator
(discriminator).

drawn from different distributions. Using one batch of true data points and one batch of
generated data points, it computes a distance between the distributions as

MMD2(PT , PG) =
⌦
k(x , x 0)
↵

x ,x 0⇠PT
+
⌦
k(y, y 0)
↵

y,y 0⇠PG
� 2
⌦
k(x , y)
↵

x⇠PT ,y⇠PG
, (15)

where k(x , y) can be any positive definite kernel function. Obviously, two identical distri-
butions lead to MMD(P, P) = 0 in the limit of high statistics. Inversely, if MMD(PT , PG) = 0
for randomly sampled batches the two distributions have to be identical PT (x) = PG(x). The
shape of the kernels determines how local the comparison between the two distributions is
evaluated. Two examples are Gaussian or Breit-Wigner kernels

kGauss(x , y) = exp�(x � y)2

2�2
or kBW(x , y) =

�2

(x � y)2 +�2
, (16)

where the hyperparameter � determines the resolution. For an optimal performance it should
be of the same order of magnitude as the width of the feature we are trying to learn. If the
resonance and the kernel width become too narrow, we can improve convergence by including
several kernels with increasing widths to the loss function. The shape of the kernel has nothing
to do with the shape of the distributions we are comparing. Instead, the choice between the
exponentially suppressed Gaussian and the quadratically suppressed Breit-Wigner determines
how well the MMD accounts for the tails around the main feature. As a machine learning
version of phase space mapping we add this MMD to the generator loss

LG ! LG +�G MMD2 , (17)

with another properly chosen variable �G .
Similar efforts in using the MMD to generate events have already been done in [24–26]

and has also been extended to a adversarial MMD version or MMD-GAN [27–29], in which
the MMD kernel is learned by another network.

In Fig. 3 we show the whole setup of our network. It works on batches of simulated
parton-level events, or unweighted event configurations {x}. The input for the generator are
batches of random numbers {r} and the masses {m} of the final state particles. Because of the
random input a properly trained GAN will generate statistically independent events reflecting
the learned patterns of the training data. For both the generator and the discriminator we use a
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Same shower pattern, different image!
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Strip (Layer 1)

Strip (Layer 1)

Strip (Layer 1)

Same shower pattern, different image!
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Same shower pattern, different image!
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Strip (Layer 1)

Strip (Layer 1)

Strip (Layer 1)
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Same shower pattern, different image!
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Same shower pattern, different image!
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Same shower pattern, different image!
We have ignored this so far
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Same shower pattern, different image!
We have ignored this so far
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Outline

1. Need for fast simulation
2. Traditional techniques 
3. Generative models: GANs, VAEs
4. Approaches taken by different experiments
5. Future prospects


