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Why should we improve MC sampling efficiency?

number of trial events needed for a single
unweighted event in W+n jets production:
Reliable automated methods do exist ...
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> issue: many events with tiny weights | W

> but we want to study high multiplicities
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-> driver for MC event generation cost
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> room for improvement
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discrepancy between resource needs and
budget at HL-LHC expected
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~ Can we come up with a smarter sampling?
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MC refresher

MC integral estimate
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Reduce variance by importance sampling
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with x; ~ g(x); variance reduced if g similar to f

construct g iteratively from building blocks, one for
each singularity/resonance
~ multi-channel importance sampling:

N, N,
gx) = Z a;8{(x) with Z a; =1

j=1 j=1

even with a good multi-channel ...

-~ channels correspond ~ denominator of
each squared diagram, but misses
numerators and interference terms

-> arbitrary phase-space cuts might apply

combine channels that reflect the
singularities with an optimiser for the
unknown non-singular structure (usually
VEGAS [Lepage CLNS-80/447) [Ohl hep-
ph/9806432]

VEGAS adapts well when dimensions
factorise:



https://inspirehep.net/literature/153221
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%20hep-ph/9806432
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%20hep-ph/9806432

How that's used in practice

goals:
> event sample with narrow weight distribution (i.e. f ~ g)
- without large-weight outlier for efficient unweighting

normalised distribution

2-step approach

> integration/optimisation phase
> set-up multi-channel for process
> optimise channel weights and VEGAS grids
- monitor maximum event weight w_ ..

> event generation phase

> generate weighted events from the (now frozen) multi-channel

> if required, unweight events (accept with probability w/w._..)

> write (un)weighted event sample to disk
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NN for sampling in HEP MC: overview

train BDT/GAN to sample phase-space [Bendavid 1707.00028]

> application to non-separable high-dimensional toy functions

train DNN to sample phase-space [Klimek Perelstein 1810.11509]
> application to 3-body decay with resonances & ee = qqg

> Improve efficiency over standard MC
~ 0O(10) over MG5

g given by Jacobian of var. transf. given by NN, train to be close to f

even if g is not perfect, we can rest assured physics is still the same
(only efficiency is lower)

caveats

> gradient/determinant expensive, in general O(d?)

~> no combination with multi-channel


https://inspirehep.net/literature/1608392
https://inspirehep.net/literature/1700733

Requirements for any new sampler

correctness: samples must converge
to true target distribution for N — o0
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- No guarantee :(

-> "weak guarantee":
full coverage for N,

> even if NN output function is surjective, input
values or hidden-layer functions might be
bounded; such bounds must be trained to be as
close to the target space edge as possible,

otherwise e.g. high p tail might be cut off

= Target
VEGAS
¢ NN Niprain = 500k

¢ NN surjective

w

— OO

\)
1

—_
1

o o
1

—
o
-

- strong guarantee: full coverage
always, even for small training sets

o

ot
1
°
°

Ratio to target Projected distribution

|



Flow-based deep generative model

[Weng lilianweng.github.io/lil-log]

construct an estimate of a complex PDF by [Dinh et al 1605.08803]

a sequence of simple invertible mappings:

f1(2zo) fi(Zi—1) fit1(2i)
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zo ~ Po(2o) z; ~ pi(2;) zi ~ Pk (ZK)
latent space data space
< >
~ full coverage of target space ~ what about cost of determinant
guaranteed by invertibility calculation O(d>)?

-> use coupling layers
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http://lilianweng.github.io/lil-log
https://arxiv.org/abs/1605.08803

Coupling layers

split input into partition x = (x4, x%)
and map

yA = x4

yE = Ceemx))

where C invertible & separable

Jacobian matrix & determinant simple

Ay (x) < L, 0 )
— oC oC
dx r d(xA)T d(xB)T

e (22)-fEte)

oxT e 0 (xB)T

~ 0(d), m does not appear and can be

arbitrarily complex (i.e. use a DNN)

need several partitions to
transform everything at least
once, stack layers:

A ! A ™ 1
X ooy y .
B v B ! 3
X C Y ER VA A

[adapted from 1808.03856]

for C, use piecewise quadratic
coupling layers as proposed in
[Muller et al 1808.03856]
"Neural importance sampling"
fun fact: Disney research ~

connection to sampling light
rays in rendering images
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Training and event generation

~ use Neural Importance Sampling as a drop-in replacement for
the VEGAS optimisation within the multi-channel Monte-Carlo

training’s conventional enough

%

minimise Pearson )(2
divergence in mini-batches

1 Z (f(p) = &(p))’

D, =
S (e (02

use gradient descent to
optimise NN weights (Adam)

generate one event

%

%

draw random x € [0,1]¢ uniformly
choose channel ¢ randomly

mapxm— y € [0,1]¢ using the
coupling layers

use channel mapping g.(y) to get the
set of momenta

calculate weight

o (22)
oxT

w =

dp(y)
det ( o7 > |f(p)
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Top-quark decay

t W Ve
single channel with Breit-Wigner mapping
1 +
g(s) = - )
(s — M%)+ MZT}, —
d=2 10* —— Uniform
Monte-Carlo estimate (with MC error) Ey 5 10° — \NZIE\IGAS
C .. *5 10—+
unweighting efficiency €., = (W)/w, .. 3
% 102 4
T 103 4 \
sample Euw Ey [GeV] &
g 10_4 5
Uniform 59%  0.1679(2) S o
VEGAS 50 % 0.16782(4) 106
NN 84 %  0.167865(5) . ’

~ significant improvement in all measures
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Top-quark pair production

| €uW E fb
still a single (shared) channel >ample N [tb]

Uniform 35 % 1.5254(8)

d=>5
VEGAS 40 % 1.5251(1)
s = 500 Gev b e
NN 78 % 1.52531(2)
, Invariant mass of the eTe™ pair
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~ similar to top decay, even harder for Uniform sampler -



do/dp, (3rd jet) [pb/GeV]

Gluon scattering gg = 39

2 independent channels, based

on HAAG phase-space mappings sample Cuw Ey [pb] Poce
[van Hameren, Papadopoulos .
hep-ph/0204055] Uniform 3% 24806(5bH) 89 %
d=5 1/s = 1 TeV VEGAS 27.7 % 24813(23) 32 %
pr > 30 GeV and m; > 30 GeV NN 64.3 % 24847(21) 34 %
variance now driven by zero-weight peak!
VEGAS 101 é —— Unif.
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El 3 B ~ good improvement
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Gluon scattering gg - 49

do/dp, (4th jet) [pb/GeV]

changes with respect to gg = 3g:

2 > 3 independent channels

d=5->d=38
VEGAS
102 A —— NN
109 -
1072 ~

sample €uw Ey [pDb] Py
Uniform 2.7 % 9869(20) 57 %
VEGAS 31.8 % 9868(10) 17 %

NN 33.6 % 9859(10) 16 %
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variance now driven by zero-weight peak!
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Complementary study results for V+jets

independent implementation by FNAL group [Gao et al 2001.10028]
implemented in SHERPA multi-channel MC as VEGAS replacement

different paradigm: single network adapting all channels (and channel weights)

TABLE II. Unweighting efficiencies at the LHC at /s = 14 TeV using the NNPDF 3.0 NNLO PDF set and a correspondingly
defined strong coupling. Jets are identified using the k7 clustering algorithm with R = 0.4, p7 ; > 20 GeV and |n;| < 6. In the case of

Z/y* production, we also apply the invariant mass cut 66 < m; < 116 GeV.

Unweighting efficiency LO QCD NLO QCD (RS)
(W) /Winax n=0 n=1 n=>2 n=23 n=4 n=0 n=1
W+ + n jets SHERPA 28x1071  38x107%2 75x107° 15x1073 83x10* 95x107%2 45x1073
NN + NF 6.1 x 107! 1.2 x 107! 1.0 x 1072 1.8 x 1073 8.9 x 10~ 1.6 x 107! 4.1 x 1073
Gain 2.2 33 1.4 1.2 1.1 1.6 0.91
W~ + n jets SHERPA 2.9 x 107! 4.0x 1072 7.7 x 1073 2.0x 1073 9.7 x 1074 1.0 x 107! 45 %1073
NN + NF 7.0 x 107! 1.5 x 107! 1.1x 1072 2.2 x 1073 7.9 x 1074 1.5x 107! 42 %1073
Gain 2.4 33 1.4 1.1 0.82 1.5 0.91
Z + n jets SHERPA 3.1x 107! 3.6 x 1072 1.5x 1072 4.7 x 1073 1.2 x 1071 53 x1073
NN + NF 3.8 x 107! 1.0 x 107! 1.4 x 1072 2.4 %1072 1.8 x 1073 5.7 x1073
Gain 1.2 2.9 0.91 0.51 1.5 1.1

~ as for our 4g case, scaling with multiplicity is an issue
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Conclusions

successful proof-of-principle for Neural Importance Sampling in a HEP
context

pros: strong phase-space coverage guarantee, cheap weight
determination

tested as drop-in replacement for VEGAS within a multi-channel Monte
Carlo, finding ...

> significant improvement for simpler examples withd < 5

-~ similar performance as VEGAS for 4-jet production (d = 8, and more
channels)

similar findings in independent study
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Outlook

resource requirements for higher multi: could change drastically when
ME generator available on accelerator such as GPU or TPU

compare different ways of combining NN and multi-channel, study if
scaling behaviour is related to these algorithmic choices

try alternatives to piecewise quadratic coupling layers (there are plenty)

try alternative training objectives, e.g. for reduction of zero-weight
events, or for an explicit reduction of w_ .. /(w)

Zoom meeting for additional discussions (open 4pm-5pm):
https:/uni-goettingen.zoom.us/j/96380931586?pwd=Wk11aFk5YVVEWitoT1J2SEdHZERkKQTO9
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