Triggering and online calibration with machine
learning techniques
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The ages of ML at the LHC

Disclaimer: this is a 15 minute talk and does not attempt to be comprehensive


http://www.funnyjunk.com/funny_pictures/4268335/Ages+of+man#da7a53_4267891

At first we just didn’t want to mess it up

4% SIPre Run-l: can we trust our detector?




...but then we got more ambitious

l

|Run-I: yes! Adoption of BDTs across offline analyses
and for real-time classification.




In the twilight of the classification epoch

‘Z-l|Run-1: yes! Adoption of BDTs across offline analyses
sv=allll and for real-time classification.

Run-Il: increasing use of real-time alignment,

@05 calibration, & analysis. Deploy ML to assist classical

B feature building, in generators & for calibration.




...looking to the pattern recognition age

Run-lll: Full interleaving of classical and ML methods
in reconstruction and analysis, real-time & offline?




Classification



ML for real-time classification at LHCb
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BBDT Response

Main inclusive beauty trigger based on a BDT since 2011, widespread use of different classifiers since. Classifier

implementation optimized for execution speed from the start. See the BBDT paper, Run 2 topological trigger
proceedings, LHCb PUB notes 2011-002,003,016, the 2011, 2012, and Run 2 trigger performance papers.



http://arxiv.org/abs/1210.6861
https://iopscience.iop.org/article/10.1088/1742-6596/664/8/082025/pdf
http://arxiv.org/abs/1211.3055
http://arxiv.org/abs/1310.8544
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-DP-2019-001.html

Flattening classifier efficiency curves
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Efficiency of a BDT classifier as a function of position in the Dalitz plane for a three
body meson decay. Left: without training for flatness. Right: with training for flatness.

For analyses which may be systematics limited, we might well be happy to trade the last few percent of classifier
performance to have a flatter efficiency dependence on kinematic variables. Again part of the toolkit since the

earliest days, see Stevens&Williams and Rogozhnikov et al. One lesson of the last decade is that well designed
ML classifiers are actually less biasing than “simple orthogonal cuts”. With a stress on “well designed”!



https://arxiv.org/abs/1305.7248
https://inspirehep.net/literature/1322385

Fake track classification at LHCb
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Different particles leave hits in different parts of LHCb. Gain by training an NN to put
the different detectors in a global selection. Classifier implementation hand-tuned for

execution speed. No room to discuss here but several different classifiers are also used

for particle identification at LHCb, including in the trigger.


http://cdsweb.cern.ch/record/2255039/files/LHCb-PUB-2017-011.pdf

Trigger classification at ATLAS

Performance of Tau HLT algorithms Performance of NN based electron ID Performance of online b-jet tagging
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Evolving from BDTs to NNs, with large rate reductions at the same efficiency working point and latency
reduction through reducing combinatorics earlier in processing chain.
Electron triggers make use of a neural-network-based ringer algorithm for an early background rejection and
overall CPU reduction.

Tau triggers make use of boosted decision tree and recurrent neural network algorithms for hadronically

decaying tau-lepton identification.

b-jet triggers make use of a multivariate b-tagging algorithm (MV2) which consists of a boosted decision tree
algorithm that combines the outputs of low-level taggers: impact parameter-based algorithms (IP2D/IP3D), a
secondary vertex finding algorithm (SV1) and a topological multi-vertex finding algorithm (JETFITTER)

See Tau classification public results, e/gamma performance paper, and b-jet ID paper for more details.



https://cds.cern.ch/record/2688062
https://link.springer.com/article/10.1140/epjc/s10052-019-7500-2
https://link.springer.com/article/10.1140/epjc/s10052-019-7450-8

Trigger classification at CMS

Performance of L1 muon endcap trigger Performance of deep b-jet tagging
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B-Jet Efficiency

In general selection in the CMS trigger is largely cut-based, but BDTs are used for some calibration tasks and
track classification. Some specific use cases are

The L1 muon endcap trigger is based on a BDT, factor 3 rate reduction at same efficiency

The b-tag triggers are based on a NN deep csv
Personal remark: interesting that ATLAS, CMS, and LHCb all use ML of one kind or another to tag beauty hadrons
or beauty jets in their triggers.

See the L1 muon endcap public note and b-jet trigger performance plots page for more details.



http://cds.cern.ch/record/2290188/files/CR2017_357.pdf
https://twiki.cern.ch/twiki/bin/view/CMSPublic/BJetTriggerRun2

Deploying classifiers in FPGAs
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Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml. 0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency

An increasing interest in deploying NN classifiers in FPGAs, which would allow their
widespread use in first level triggers or in CPU-FPGA coprocessor based architectures.

Compression of NNs is particularly important in the first level trigger case, to fit
into available resources. See Duarte et al., Gugliemo et al., Summers et al. for more.



https://arxiv.org/pdf/1804.06913.pdf
https://arxiv.org/pdf/2003.06308.pdf
https://arxiv.org/pdf/2002.02534.pdf

Unsupervised trigger classification

Unsupervised (solid) and Evolution of unsupervised learning
supervised (dashed) classifier performance when injecting SM
performance for BSM signals. background into training sample.
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Approaches based on unsupervised learning and targeting a kind of generalized anomaly

detection are also being explored in the community. See Cerri et al. for more details.


https://arxiv.org/pdf/1811.10276.pdf

Reconstruction

15



ML classifiers to speed up reconstruction
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In LHCb, the first steps towards an ML based reconstruction were to add NN classifiers
inside the classical Hough-transform based pattern recognition for an early rejection of

bad hit combinations => significant speedup of the pattern recognition code. But the NN
is still not making trajectories from hits, but rather classifying trajectories.




TrackML challenge & Exa.TrkX projects

Scoring model of TrackML challenge Challenge to see what physics performance (first phase) and throughput
(second phase) machine learning approaches could get in track reconstruction.

truth track

strip detector found track

high welight Input dataset based on a "realistic” HEP detector with the physics score
taking into account relevant criteria like “which hit did | miss on the track” to
Eiv(: \:/V::s:: also fold in things like resolution without making the scoring too complex.
low weight
low weight Best approaches mixed classical tracking (e.g. Kalman filter style track
mid weight following) and physically motivated models of the track path through the
pixel detector high weight detector with machine learning aspects in rejecting fake combinatorics and

highestwelght  training the algorithm to find the optimal search parameters.

particle origin

The Exa.TrkX project, which is a continuation of the HEP.TrkX pilot, is looking -
to use Graph Neural Networks for a more completely “ML based” tracking [\\/

across different experiments (LHC and beyond, e.g. DUNE). \1‘

On the right (click to play) is shown the performance of a track finding Graph w l

Neural Network as a function of the message-passing iteration. Best results oM ]

Model cutput

are found after eight iterations.

See the TrackML challenge page, Kiehn et al., the final workshop, and the Exa.TrkX

github repository for more information.


https://www.kaggle.com/c/trackml-particle-identification
https://inspirehep.net/literature/1761296
https://indico.cern.ch/event/813759/timetable/?view=standard
https://exatrkx.github.io
https://exatrkx.github.io

NN based primary vertex reconstruction
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Another hybrid approach: classical algorithm finds the tracks, a NN then finds the PVs.

The algorithm's physics performance is very promising, optimization for computational
efficiency is ongoing. See Fang et al. and a recent CTD talk for more details.



https://inspirehep.net/literature/1740667
https://indico.cern.ch/event/909436/contributions/3827841/attachments/2020492/3381017/pvfinder_ctd_20200420_mstahl.pdf

Calibration



Charge distortion corrections in the ALICE TPC

In Run3, new readout system of the ALICE Time Projection Chamber will allow to collect data in continuous mode

N A GEM detectors will release in the TPC active area slow ions that
@ L IN oarticle track can distort the electric field that guides the electrons
SeaeNT TN \ToF i |

m o 1

eaverage “shift” (distortion) and
fluctuations in the positions of the
reconstructed TPC clusters

!

Average distortions and distortion fluctuations need
to be corrected before the tracking is performed (in
Run3 mostly performed online):

2l ~  lons

- GEM foil I ~50um

i

Wy
W
N

A
Rl /
1)
|
/,\
,
T
.
<
£

e electron drift time ~ 100ps

e jon drift time ~ 200ms — Analytical correction procedure is way too slow!
e lons belonging to 8000 different PbPb collisions!



UNets for correcting TPC distortion fluctuations

—UNets (type of convolutional NN) being explored to correct for the TPC distortion fluctuations using as an input

the TPC space charge densities or currents
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See backup slides for more details and references



Estimating jet energy with DNNs at CMS

(13 TeV) (13 TeV) (13 TeV)
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See the public note for more details. Many other interesting use cases, see also

Adversarial NNs for data-simulation corrections, and deep learning for per-object
systematic uncertainties.



https://cds.cern.ch/record/2690804/files/HIG-18-027-pas.pdf
https://cds.cern.ch/record/2666647/files/DP2019_003.pdf
https://arxiv.org/pdf/2003.11099.pdf
https://arxiv.org/pdf/2003.11099.pdf

Conclusions
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A diverse and heterogeneous future

Run-lll: Full interleaving of classical and ML methods

in reconstruction and analysis, real-time & offline?

Some personal remarks

1. We know by now that ML methods can outperform classical methods in physics terms in
classification. There are increasing hints that the same may hold for reconstruction.

2. We are accumulating operational experience deploying these methods in real-time and using
them to not only get more physics but also better control and understanding of our detectors.

3. We are also developing experience deploying ML across a range of computing architectures,
which may be important if large-scale computing continues to become more heterogeneous.

4. A key challenge is to systematically understand the computational efficiency of different ML
approaches and where best to mix classical or hand-optimized elements to speed things up. Both
algorithms and the data structures used to pass information between them are crucial to this.



Backup



UNet for correcting for distortion fluctuations

UNets being explored to correct for the TPC distortion fluctuations using as an input the TPC space charge densities or

currents

inputs:
- space charge lon densities and fluctuations

average map: <p(r,@,z)>
fluctuation maps: p(r,@,z) - <p(r,p,z)>

UNets

Predicted quantities:

- Distortion fluctuations along the 3 direction
(R,Ry, 2)

\ TOF En

/

I
fluctuation maps: =
* <Or>- 5r, '
* I<O4p>-T0y,
* <6z> - 52

In this strategy a hew training could be performed periodically to build the “map” using simulated data or real data

and used to produced corrections based on realistic space charge densities
LHCP
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TPC readout in Run3: GEM chambers

Goal of Run3 is to collect all the MB PbPb events delivered:
- 50kHz of collisions for total of ~50 billion events over 2/3 years of data taking
* Current TPC can run up to few KHz (limitation imposed by the process of IBF gating)

1
H
{4
4 |
4
\_/ “

RIFT,

X,y “‘segmented” electrode for signal collection

GEM (Gas Electron Multipliers)

Thin polymer foil, metal-coated on both sides and pierced with a high
density of holes where strong electric fields to generate multiplication:

— faster: signal collected only using electrons, not ions

— more stable: readout region and multiplication region are
separate: propagation of discharges is much less likely

— reduced IBF: ions produced in multiplication are partially
collected by the GEM

LHCP 27



Distortion scenario with GEM in Run3

BUT there is no ion gating! In the drift region we will have:

B N _ - Primary ions: produced by the passage of the tracks
D particle track - Secondary ions (or ion backflow): produce in the GEM
LS multiplication region ~ uniformly distributed in the drift region

electrons :

Some numbers:

~m - time between two collisions — t=1/(50kHz) = 20pus
- electron drift time ~ 100us

*ion drift time ~ 200ms

- Screenshot of the TPC at any given time:
- electrons belonging to 5 different PbPb collisions
* BF lons belonging to 8000 different PbPb collisions!

- BF ions will be >> primary produced ions

How will the space charge distribution look like in the TPC?

LHCP 28



Readout chambers

Average space charge (SC) densities <psc>

A ~ uniformly distributed flow of BF flow ions that go from the readout pads to the center of the TPC :

TPC (one side)

++++++++++++++++H++

++++++++++++++++++HHH++
++++++++++++++++++ T+

++++++++++++++++H++
++++++++++++++++++HHHH T
—_—

Central electrode

Psc = charge /volume
Ne-CO,-N, (90-10-5): 50 kHz, & = 20

-100, ]
150,500 50, 240 More charge density
atsmall R
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Readout chambers

Average distortions <o>

A ~ uniformly distributed flow of BF flow ions that go from the readout pads to the center of the TPC :

Psc = charge /volume
Ne-CO,-N, (90-10-5): 50 kHz, € = 20

TPC (one side) O
©
O
=
O
ko,
SRR R R AR RRRRRRRRRRIRRRRRIRRRRRRRRIRRRIRIRRRRIERRRRRRRURQRVPRPNHNVNEFE m "?—\140
© E1m
+++++++++++++++H+H = SR @ .
3 ol
o 80
<lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll --'1',7_'»",, .......

250 500
z(cm)1501oo 0 0 . 220
150,500 7, 240 More charge density
atsmall R

Is that all? Are we fine if we correct only the average effect
of space charge densities as in Run2?

LHCP 30



Space charge fluctuations

Readout chambers

180

160

140

-250

TPC (one side)

+++++++++++++++ T |
e T b ik o Rk = R

+++++++++++++

++++++++++++++H+
+++++i+++++++++++++++++

Central electrode

Integrated over phi

-200 -150 -100

- Screenshot of the TPC at any given time:
* BF lons belonging to 8000 different PbPb collisions!

Space charge fluctuations generated by:
- fluctuations in the n. of pile up events in TPC
- fluctuations in the n. of BF ions in each collisions

800 § (e.g. multiplicity fluctuations)
5 - fluctuations of ionization charge/ track
700 © .
O \Tor 47 ]
600 Q \TRD gé/ /
—1500 - [
400
300
200
100 Fluctuations in the distortion of the TPC
0 clusters: substantial effects (~mm)
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Run3 requirements and strategy

Synchronous stage: Asynchronous stage:
- distortions corrected with precision ~mm for - distortions corrected with precision ~ 200um
cluster-track association, tracking and track matching (TPC resolution)

l l

Correction for average distortions: Correction for average distortion and fluctuations:
* pre-calculated correction maps computed - correction maps for average distortions computed
based on MC events or data from previous with real data (within ~min)
data (with ITS-TRD interpolation techniques) - corrections for distortion fluctuations (?)

Correcting for distortion fluctuations is currently the biggest challenge!
- to efficiently correct fluctuations we need new distortion correction ~bms to account for changes in the SC densities
- analytical corrections take too much time

— 3D convolutional neural network can help to map the effect of SC densities into distortion corrections

LHCP
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Model and training setup

UNet: convolutional neural network developed for

biomedical image segmentation. Includes: For network structure and configuration (link)
« Series of 3D CNNs + Pooling/Upsampling layers

filters: 4

arXiv:1505.04597 pooling: 0
—> batch _size: 27

shuffle: false

depth: 4
batch normalization: O
Input drODOUt OO
I I I > I Output ephocs: 20
—>  Maxpooling 2°2 lossfun: mse
> Up-conv 2*2 .
1 > l 7 metrics: mse
B |

_> Conv 3*3
-> LcOnvl 1 adamlir: 0.001000
-> o

->

Copy and crop

Some timing information:

—training on ~800 events with 90x17x17 grid takes ~ 2min with 1 NVIDIA V100
—training on ~800 events with 180x33x33 grid takes ~ 15 min with 1 NVIDIA V100
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