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The ages of ML at the LHC Courtesy of funnyjunk

Disclaimer: this is a 15 minute talk and does not attempt to be comprehensive 2

http://www.funnyjunk.com/funny_pictures/4268335/Ages+of+man#da7a53_4267891


At first we just didn’t want to mess it up
Pre Run-I: can we trust our detector?
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…but then we got more ambitious
Pre Run-I: can we trust our detector?

Run-I: yes! Adoption of BDTs across offline analyses 
and for real-time classification.
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In the twilight of the classification epoch
Pre Run-I: can we trust our detector?

Run-I: yes! Adoption of BDTs across offline analyses 
and for real-time classification.

Run-II: increasing use of real-time alignment, 
calibration, & analysis. Deploy ML to assist classical 
feature building, in generators & for calibration.
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…looking to the pattern recognition age
Pre Run-I: can we trust our detector?

Run-I: yes! Adoption of BDTs across offline analyses 
and for real-time classification.

Run-II: increasing use of real-time alignment, 
calibration, & analysis. Deploy ML to assist classical 
feature building, in generators & for calibration.

Run-III: Full interleaving of classical and ML methods 
in reconstruction and analysis, real-time & offline?
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Classification
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Main inclusive beauty trigger based on a BDT since 2011, widespread use of different classifiers since. Classifier 
implementation optimized for execution speed from the start. See the BBDT paper, Run 2 topological trigger 
proceedings, LHCb PUB notes 2011-002,003,016, the 2011, 2012, and Run 2 trigger performance papers.
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Figure 10: Response from the BBDT for minimum bias LHCb 2010 data (shaded grey),
pp → cc̄X Monte Carlo (blue), pp → bb̄X Monte Carlo (red) and all minimum bias Monte
Carlo (black). The Monte Carlo is not normalized to the data (see text for details). N.b.,
no muon or electron requirements were used when making this plot.
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ML for real-time classification at LHCb
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http://arxiv.org/abs/1210.6861
https://iopscience.iop.org/article/10.1088/1742-6596/664/8/082025/pdf
http://arxiv.org/abs/1211.3055
http://arxiv.org/abs/1310.8544
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-DP-2019-001.html


For analyses which may be systematics limited, we might well be happy to trade the last few percent of classifier 
performance to have a flatter efficiency dependence on kinematic variables. Again part of the toolkit since the 
earliest days, see Stevens&Williams and Rogozhnikov et al. One lesson of the last decade is that well designed 
ML classifiers are actually less biasing than “simple orthogonal cuts”. With a stress on “well designed”!

Flattening classifier efficiency curves

9

Efficiency of a BDT classifier as a function of position in the Dalitz plane for a three 
body meson decay. Left: without training for flatness. Right: with training for flatness.

https://arxiv.org/abs/1305.7248
https://inspirehep.net/literature/1322385


Fake track classification at LHCb

Different particles leave hits in different parts of LHCb. Gain by training an NN to put 
the different detectors in a global selection. Classifier implementation hand-tuned for 
execution speed. No room to discuss here but several different classifiers are also used 
for particle identification at LHCb, including in the trigger.
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http://cdsweb.cern.ch/record/2255039/files/LHCb-PUB-2017-011.pdf
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Trigger classification at ATLAS

Evolving from BDTs to NNs, with large rate reductions at the same efficiency working point and latency 
reduction through reducing combinatorics earlier in processing chain. 

Electron triggers make use of a neural-network-based ringer algorithm for an early background rejection and 
overall CPU reduction. 
Tau triggers make use of boosted decision tree and recurrent neural network algorithms for hadronically 
decaying tau-lepton identification.
b-jet triggers make use of a multivariate b-tagging algorithm (MV2) which consists of a boosted decision tree 
algorithm that combines the outputs of low-level taggers: impact parameter-based algorithms (IP2D/IP3D), a 
secondary vertex finding algorithm (SV1) and a topological multi-vertex finding algorithm (JETFITTER)

See Tau classification public results, e/gamma performance paper, and b-jet ID paper for more details. 11

Performance of Tau HLT algorithms Performance of NN based electron ID
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https://cds.cern.ch/record/2688062
https://link.springer.com/article/10.1140/epjc/s10052-019-7500-2
https://link.springer.com/article/10.1140/epjc/s10052-019-7450-8


Trigger classification at CMS

In general selection in the CMS trigger is largely cut-based, but BDTs are used for some calibration tasks and 
track classification. Some specific use cases are

The L1 muon endcap trigger is based on a BDT, factor 3 rate reduction at same efficiency
The b-tag triggers are based on a NN deep csv

Personal remark: interesting that ATLAS, CMS, and LHCb all use ML of one kind or another to tag beauty hadrons 
or beauty jets in their triggers.
See the L1 muon endcap public note and b-jet trigger performance plots page for more details. 12

Performance of L1 muon endcap trigger Performance of deep b-jet tagging
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Three Station Modes

Mode Feature ��12 ��23 +/- �✓13 B1 B2 B3 FR1 FR2 ✓ Mode
1-2-3 Bits 7 5 1 3 2 1 1 1 1 5 3
Mode Feature ��12 ��24 +/- �✓14 B1 B2 B4 FR1 FR2 ✓ Mode
1-2-4 Bits 7 5 1 3 2 1 1 1 1 5 3
Mode Feature ��13 ��34 +/- �✓14 B1 B3 B4 FR1 FR3 ✓ Mode
1-3-4 Bits 7 5 1 3 2 1 1 1 1 5 3
Mode Feature ��23 ��34 +/- �✓24 B2 B3 B4 FR2 – ✓ Mode
2-3-4 Bits 7 5 1 3 2 1 1 1 – 5 4

Two Station Modes

Mode Feature ��XY �✓XY BX BY FRX FRY ✓ Mode
X-Y Bits 7 3 3 3 1 1 5 7

X-Y runs through the possible two station combinations: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4.

5. Results and Conclusions
The LUT scheme utilizing the BDT predictions has been implemented in the EMTF for 2016
and 2017 data taking. As seen in Figure 1, the upgraded system – compared to the legacy
system – reduces the rate at 25 GeV by a factor of three with no loss in e�ciency. The legacy
system was used in the endcaps until 2015.

Figure 1. On the left, the upgraded EMTF rate divided by the legacy rate is shown for a
variety of pt thresholds. On the right, the upgraded and legacy e�ciencies are presented for a
25 GeV threshold. The upgraded EMTF has a 3x lower rate than the legacy system at 25 GeV
with virtually no di↵erence in plateau e�ciency for the same threshold. Plots are taken from [4].

References
[1] Khachatryan V et al. (CMS) 2017 JINST 12 P01020 (Preprint 1609.02366)
[2] Tapper A and Acosta D (CMS collaboration) 2013 CMS Technical Design Report for the Level-

1 Trigger Upgrade Tech. Rep. CERN-LHCC-2013-011. CMS-TDR-12 additional contacts: Je↵rey

Spalding, Fermilab, Je↵rey.Spalding@cern.ch Didier Contardo, Universite Claude Bernard-Lyon I,

didier.claude.contardo@cern.ch URL https://cds.cern.ch/record/1556311

http://cds.cern.ch/record/2290188/files/CR2017_357.pdf
https://twiki.cern.ch/twiki/bin/view/CMSPublic/BJetTriggerRun2


Deploying classifiers in FPGAs

An increasing interest in deploying NN classifiers in FPGAs, which would allow their 
widespread use in first level triggers or in CPU-FPGA coprocessor based architectures. 
Compression of NNs is particularly important in the first level trigger case, to fit 
into available resources. See Duarte et al., Gugliemo et al., Summers et al. for more. 13

https://arxiv.org/pdf/1804.06913.pdf
https://arxiv.org/pdf/2003.06308.pdf
https://arxiv.org/pdf/2002.02534.pdf


Unsupervised trigger classification

Approaches based on unsupervised learning and targeting a kind of generalized anomaly 
detection are also being explored in the community. See Cerri et al. for more details. 14

Unsupervised (solid) and 
supervised (dashed) classifier 
performance for BSM signals.

Evolution of unsupervised learning 
performance when injecting SM 
background into training sample.

https://arxiv.org/pdf/1811.10276.pdf


Reconstruction
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ML classifiers to speed up reconstruction

In LHCb, the first steps towards an ML based reconstruction were to add NN classifiers 
inside the classical Hough-transform based pattern recognition for an early rejection of 
bad hit combinations => significant speedup of the pattern recognition code. But the NN 
is still not making trajectories from hits, but rather classifying trajectories. 16



TrackML challenge & Exa.TrkX projects

See the TrackML challenge page, Kiehn et al., the final workshop, and the Exa.TrkX 
github repository for more information. 17

single scoring function has to be selected that allows us to rank different solutions based on
their expected physics performance.

As a simplification, hits have to be uniquely associated to a single reconstructed track.
Only reconstructable tracks with four hits or more are considered. As a minimal requirement
a reconstructed track is scored only if more than 50 % of its hits originate from the same
truth particle. Using the truth information from the simulation, all hits originating from this
majority particle are selected for each track. Each hit has an per-hit scoring weight and the
total score for a given solution is given by the following multiple sum

S ∼
∑

{events}

∑

{tracks}

⎧⎪⎪⎨
⎪⎪⎩

0 #good hits < 50 %, #hits < 3
∑
{good hits} wi else

(1)

S per f ect = 1 (2)
wi = wi

(
hit order, particle p⊥

)
. (3)

With this definition no penalty for incorrect hits, i.e. hits associated to a track that do not orig-
inate from its majority particle, is necessary, since a wrongly associated hit will automatically
reduce the score for the track it should have been associated to.

Figure 2. On the left: illustration of the order-dependent hit weight. On the right: the simulated p⊥
spectrum and the p⊥-dependent hit weight.

The contributions to the per-hit weight are illustrated in figure 2. The order-dependent
weight penalizes missed hits at the inner and outer-most part of the detector. Missing an hit
on the inner-most layer will strongly influence the vertex resolution, while a missed hit on the
outer layers reduces the lever arm for the momentum measurement and thus the momentum
resolution. The p⊥-dependent part favors reconstructing high-momentum tracks over low-
momentum tracks without excluding either region completely.

The overall score is normalized such that a random solution scores zero and a score of
one is a perfect reconstruction of all events in the dataset.

2.5 The Kaggle platform

The accuracy phase uses the Kaggle platform [4, 6]. This platform hosts the dataset and
provides the scoring and the leader-board for the participants. Participants can download the
training and test dataset, train on the former and prepare a solution for the latter, and upload
the solution.

While a variety of solution metrics already existed, the scoring metric discussed in section
2.4 was not one of them. It was implemented by Kaggle on their platform specifically for

5

EPJ Web of Conferences 214, 06037 (2019) https://doi.org/10.1051/epjconf/201921406037
CHEP 2018

Challenge to see what physics performance (first phase) and throughput 
(second phase) machine learning approaches could get in track reconstruction.  

Input dataset based on a “realistic” HEP detector with the physics score 
taking into account relevant criteria like “which hit did I miss on the track” to 
also fold in things like resolution without making the scoring too complex. 

Best approaches mixed classical tracking (e.g. Kalman filter style track 
following) and physically motivated models of the track path through the 
detector with machine learning aspects in rejecting fake combinatorics and 
training the algorithm to find the optimal search parameters.

Scoring model of TrackML challenge

The Exa.TrkX project, which is a continuation of the HEP.TrkX pilot, is looking 
to use Graph Neural Networks for a more completely “ML based” tracking 
across different experiments (LHC and beyond, e.g. DUNE). 

On the right (click to play) is shown the performance of a track finding Graph 
Neural Network as a function of the message-passing iteration. Best results 
are found after eight iterations.

https://www.kaggle.com/c/trackml-particle-identification
https://inspirehep.net/literature/1761296
https://indico.cern.ch/event/813759/timetable/?view=standard
https://exatrkx.github.io
https://exatrkx.github.io


NN based primary vertex reconstruction

Another hybrid approach: classical algorithm finds the tracks, a NN then finds the PVs. 
The algorithm's physics performance is very promising, optimization for computational 
efficiency is ongoing. See Fang et al. and a recent CTD talk for more details. 18

https://inspirehep.net/literature/1740667
https://indico.cern.ch/event/909436/contributions/3827841/attachments/2020492/3381017/pvfinder_ctd_20200420_mstahl.pdf


Calibration
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Charge distortion corrections in the ALICE TPC

 20
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In Run3, new readout system of the ALICE Time Projection Chamber will allow to collect data in continuous mode

GEM detectors will release in the TPC active area slow ions that 
can distort the electric field that guides the electrons

• electron drift time ~  100μs 
• ion drift time ~ 200ms  
• Ions belonging to 8000 different PbPb collisions!

TRD

TOF

ITS

TPC

•average “shift” (distortion) and 
fluctuations in the positions of the 
reconstructed TPC clusters 

Average distortions and distortion fluctuations need 
to be corrected before the tracking is performed (in 
Run3 mostly performed online): 

→ Analytical correction procedure is way too slow!  



UNets for correcting TPC distortion fluctuations

See backup slides for more details and references 21

TPC intrinsic resolution ~ 200μm 

Work in Progress

Very promising results: 
•Resolution of the predicted distortion fluctuations are ~ 
TPC intrinsic resolution  

•orders of magnitude faster than analytical methods 

Development on going to: 
•optimize the network architecture and the input training 
data format  

•define a solid training/testing routine that fits the tight 
time budget of sync/async reconstruction strategy

→UNets (type of convolutional NN) being explored to correct for the TPC distortion fluctuations using as an input 
the TPC space charge densities or currents



Estimating jet energy with DNNs at CMS

See the public note for more details. Many other interesting use cases, see also 
Adversarial NNs for data-simulation corrections, and deep learning for per-object 
systematic uncertainties. 22

6. Results 7

Figure 2 shows the 25, 40, 50, and 75% quantiles of the y = p
gen
T /p

reco
T distribution before and

after applying the DNN b jet energy corrections, as a function of jet pT, h, and r. The results
are obtained on for b jets from the tt test sample. It can be seen that after application of the
DNN corrections, the distribution becomes narrower, and its median and 40% quantile, which
is used as an empirical approximation of the most probable value of the target distribution and
was not specifically used in the training, exhibit a flatter dependence as a function of jet pT, h,
and the median event energy density r.
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Figure 2: 25, 40, 50, and 75% quantiles are shown for b jet energy scale p
gen
T /p

reco
T distribution before

(blue) and after (red) applying the regression correction as a function of jet pT (left), h (center), and r
(right).

To quantify the resolution improvement, the intrinsic jet energy resolution s is estimated as
half of the difference between the 75 and 25% quantiles of the b jet energy scale p

gen
T /p

reco
T

distribution, q75 and q25. The relative jet energy resolution s̄ is defined as the resolution s
divided by the most probable value estimated as the 40% quantile, q40 :

s̄ :=
s

q40
=

q75 � q25
2

1
q40

. (5)

Figure 3 shows the value of s̄ obtained for b jets from the tt test sample as a function of the
generator-level jet transverse momentum p

gen
T (left), pseudorapidity h (center), and r (right).

The ratio panels in Fig. 3 show the relative differences between the s̄ obtained before and after
applying the DNN energy correction. The observed behavior agrees with the design expecta-
tion that the regression correction optimizes the jet energy resolution, complementary to the
baseline corrections that target a flat response as a function of the generator-level jet transverse
momentum and pseudorapidity.

The relative improvement on s̄ for b jets from different physics processes is given in Table
1. For all physics processes considered, the per jet relative resolution improvement is around
11–14% for pT < 100 GeV, falling to around 5–8% for pT > 200 GeV. The absolute resolution
improvement for jets with low pT grows to around 20% because of the large difference between
the centroid estimator values for the baseline and DNN at low pT, as can be seen in Fig. 2 (left).

Knowledge of the jet energy resolution on a jet-by-jet basis can be exploited in analyses search-
ing for resonant production of b jet pairs to increase their sensitivity. The b jet energy resolution
estimator is defined as half difference of 25 and 75% quantile estimators provided by the DNN:

ŝ :=
1
2
(ŷ2 � ŷ1). (6)

To check that the b jet energy resolution estimator provided by the DNN indeed represents
the intrinsic jet resolution, the following test was performed. The sample of b jets was split

6. Results 9

While the improvements described above are quoted at the single jet level, many physics analy-
ses use the invariant mass of the two b jet system as a discriminating variable for signal extrac-
tion. We observe that the improvement in the resolution of the dijet invariant mass is generally
better than the one of a single jet in the pair. The effect of the correction on the dijet invariant
mass resolution comes mainly from two factors: the aforementioned improvement in jet res-
olution and an effective equalization of the energy scale in all regions of phase space covered
by the training. An improvement of about 20% in the dijet invariant mass resolution in the
Z(! `+`�)H(! bb) sample can be observed in Fig. 5, where events with two leptons and
two jets were selected. Jets were required to have a pT larger than 20 GeV, absolute value of h
below 2.4, and be compatible with the hadronization of b quarks, referred to as “b-tagged” [35]
jet in the following. The selection criteria for the b-tagged jet correspond to a 70% b jet tag-
ging efficiency with a 1% misidentification rate for light-flavor jets. Leptons were required to
have a transverse momentum larger than 20 GeV, while the lepton pairs were required to be
compatible with the decay of a Z boson, requiring their invariant mass to be compatible within
20 GeV with the mass of the Z boson. The Z boson candidate is required to have a transverse
momentum larger than 150 GeV.
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Figure 5: Dijet invariant mass distributions for simulated samples of Z(! `+`�)H(! bb) events,
where two jets and two leptons were selected. Jets compatible with hadronization of b quarks were
required to have pT > 20 GeV and |h| < 2.4, leptons were required to have pT > 20 GeV, and Z boson
candidates constructed from lepton pairs were required to have pT > 150 GeV. Distributions are shown
before (dotted blue) and after (red line) applying the b jet energy corrections. A Bukin function [42] is
used to fit the distribution. The fitted mean and width of the core of the distribution are displayed on
the figure.

In addition, a dedicated study was performed to test how well the algorithm performance can
be transferred to the domain of pp collision data. A set of Z boson candidates decaying to
charged leptons was extracted from pp collisions recorded by the CMS experiment in 2017. A
standard set of requirements [27, 43] was applied to select events with electron or muon pairs
compatible with a decay of the Z boson. Events were further required to have at least one
b-tagged jet. The leading jet, based on pT, was required to have |h| < 2, while the transverse
momentum of the dilepton system was required to be larger than 100 GeV. The transverse
momentum balance between the Z boson and the b-tagged jet candidate was enforced by re-
quiring that extra jets have transverse momenta less than 30% of the Z momentum to suppress
events with additional hadronic activity. Events satisfying these requirements were used to
measure the scale and resolution of the selected jets following the methodology described in
Ref. [27]. Figure 6 shows the ratio between the transverse momentum of the leading jet and

Use a deep neural network to calibrate the reconstructed energy of b-jets. 

Both information about the jet constituents and information about the rest 
of the event (pileup) is used in the training.

https://cds.cern.ch/record/2690804/files/HIG-18-027-pas.pdf
https://cds.cern.ch/record/2666647/files/DP2019_003.pdf
https://arxiv.org/pdf/2003.11099.pdf
https://arxiv.org/pdf/2003.11099.pdf
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A diverse and heterogeneous future

 24

Run-III: Full interleaving of classical and ML methods 
in reconstruction and analysis, real-time & offline?

Some personal remarks 

1. We know by now that ML methods can outperform classical methods in physics terms in 
classification. There are increasing hints that the same may hold for reconstruction. 

2. We are accumulating operational experience deploying these methods in real-time and using 
them to not only get more physics but also better control and understanding of our detectors. 

3. We are also developing experience deploying ML across a range of computing architectures, 
which may be important if large-scale computing continues to become more heterogeneous. 

4. A key challenge is to systematically understand the computational efficiency of different ML 
approaches and where best to mix classical or hand-optimized elements to speed things up. Both 
algorithms and the data structures used to pass information between them are crucial to this.



Backup

25



LHCP 26

UNet for correcting for distortion fluctuations

TRD

TOF

ITS

TPC

In this strategy a new training could be performed periodically to build the “map” using simulated data or real data 
and used to produced corrections based on realistic space charge densities

inputs: 
• space charge Ion densities and fluctuations

Predicted quantities: 
• Distortion fluctuations along the 3 direction 
(R,R𝜑, z) 

average map: <𝝆(r,𝜑,z)>
fluctuation maps: 𝝆(r,𝜑,z) - <𝝆(r,𝜑,z)>     fluctuation maps:

• <𝛿r> - 𝛿r, 
•  r<𝛿𝜑> - r𝛿𝜑,  
• <𝛿z> - 𝛿z

UNets

UNets being explored to correct for the TPC distortion fluctuations using as an input the TPC space charge densities or 
currents
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TPC readout in Run3: GEM chambers 
Goal of Run3 is to collect all the MB PbPb events delivered:
• 50kHz of collisions for total of ~50 billion events over 2/3 years of data taking
• Current TPC can run up to few KHz (limitation imposed by the process of IBF gating) 

x, y “segmented” electrode for signal collection

GEM (Gas Electron Multipliers)

Thin polymer foil, metal-coated on both sides and pierced with a high 
density of holes where strong electric fields to generate multiplication:

→ faster: signal collected only using electrons, not ions
→ more stable: readout region and multiplication region are 
     separate: propagation of discharges is much less likely 
→ reduced IBF: ions produced in multiplication are partially 
     collected by the GEM 

EGAP

+

-
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Distortion scenario with GEM in Run3

BUT there is no ion gating! In the drift region we will have:

• Primary ions: produced by the passage of the tracks
• Secondary ions (or ion backflow): produce in the GEM 
multiplication region ~ uniformly distributed in the drift region

~50μm

~m

Io
n

Ion

Some numbers: 
• time between two collisions → t=1/(50kHz) = 20μs
• electron drift time ~  100μs
• ion drift time ~ 200ms 

• Screenshot of the TPC at any given time:
• electrons belonging to 5 different PbPb collisions
• BF Ions belonging to 8000 different PbPb collisions!

How will the space charge distribution look like in the TPC?

• BF ions will be >> primary produced ions
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More charge density 
at small R

ρsc = charge /volume 

Average space charge (SC) densities <ρsc>
A ~ uniformly distributed flow of BF flow ions that go from the readout pads to the center of the TPC :
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Average distortions <δ>

More charge density 
at small R

Is that all? Are we fine if we correct only the average effect 
of space charge densities as in Run2?

ρsc = charge /volume 

A ~ uniformly distributed flow of BF flow ions that go from the readout pads to the center of the TPC :
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Space charge fluctuations

• Screenshot of the TPC at any given time:
• BF Ions belonging to 8000 different PbPb collisions!

Space charge fluctuations generated by:
• fluctuations in the n. of pile up events in TPC
• fluctuations in the n. of BF ions in each collisions 
(e.g. multiplicity fluctuations)

• fluctuations of ionization charge/ track
• …

Fluctuations in the distortion of the TPC 
clusters: substantial effects (~mm) 
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Run3 requirements and strategy
Synchronous stage:
• distortions corrected with precision ~mm for 
cluster-track association, tracking and track matching 

Asynchronous stage:
• distortions corrected with precision ~ 200μm 
(TPC resolution)

     Correction for average distortions:
• pre-calculated correction maps computed 
based on MC events or data from previous 
data (with ITS-TRD interpolation techniques) 

     Correction for average distortion and fluctuations: 
• correction maps for average distortions computed 
with real data (within ~min) 

• corrections for distortion fluctuations (?)

Correcting for distortion fluctuations is currently the biggest challenge!
• to efficiently correct fluctuations we need new distortion correction ~5ms to account for changes in the SC densities 
• analytical corrections take too much time 
→ 3D convolutional neural network can help to map the effect of SC densities into distortion corrections
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Model and training setup
For network structure and configuration (link)

UNet: convolutional neural network developed for 
biomedical image segmentation. Includes:
• Series of 3D CNNs + Pooling/Upsampling layers

  filters: 4
  pooling: 0
  batch_size: 27
  shuffle: false
  depth: 4
  batch_normalization: 0
  dropout: 0.0
  ephocs: 20
  lossfun: mse
  metrics: mse
  adamlr: 0.001000

Some timing information:
→training on ~800 events with 90x17x17 grid takes ~ 2min with 1 NVIDIA V100
→training on ~800 events with 180x33x33 grid takes ~ 15 min with 1 NVIDIA V100
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