
Interpretability and 
reliance on simulation

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

BERKELEY 
EXPERIMENTAL 
PARTICLE 
PHYSICS

Benjamin Nachman
Lawrence Berkeley National Laboratory

cern.ch/bnachman @bpnachman bnachman
bpnachman@lbl.gov

LHCP 2020
Virtual

 May 27, 2020

http://cern.ch/bnachman


Interpretability and 
reliance on simulation

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

BERKELEY 
EXPERIMENTAL 
PARTICLE 
PHYSICS

Benjamin Nachman
Lawrence Berkeley National Laboratory

cern.ch/bnachman @bpnachman bnachman
bpnachman@lbl.gov

I won’t say much 
explicitly about this 

during the talk

LHCP 2020
Virtual

 May 27, 2020

http://cern.ch/bnachman


3Data analysis in HEP

Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment



4Data analysis in HEP + Deep Learning

Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Parameter 
estimation / 
unfolding

Data curation

Classification to 
enhance 
sensitivity

“signal” versus “background”

calibration 
clustering 
tracking 

noise mitigation 
particle identification 

…

Fast sim., 
phase 

space, etc. Online 
processing & 
quality control



5Data analysis in HEP + Deep Learning

Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Parameter 
estimation / 
unfolding

Data curation

Classification to 
enhance 
sensitivity

“signal” versus “background”

calibration 
clustering 
tracking 

noise mitigation 
particle identification 

…

Fast sim., 
phase 

space, etc. Online 
processing & 
quality control

Outline for today

Uncertainty on 
simulation-based 

inference

The landscape of 
simulation-independent 

inference



6Uncertainties

“But what are the uncertainties on the NN”?
- question asked by every reviewer



7Uncertainties

“But what are the uncertainties on the NN”?
- question asked by every reviewer

Let’s consider this question in the context of 
a search for new particles in collision events.



8Setup
1. Train a classifier (in sim.) 
for signal vs. background.  

2. Define a control region 
(CR) and a signal region 
(SR) using (1). 

3. Check / modify 
simulation in CR. 

4. Compare data and 
simulation in SR.  

Significantly 
different? go to 
Stockholm : publish 
limits.
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9Uncertainties for a NN-based analysis

Precision / Optimality

Accuracy / Bias

Bad use of our data, time, money, etc. but not wrong.



10Uncertainties for a NN-based analysis

Accuracy / Bias

Precision / Optimality: NN(x) 6= ptrue(x|S+B)
ptrue(x|B)

Optimal by Neyman-Pearson 
(no nuisance parameters)

Note that this is not p(x|S) / p(x|B), however the 
two are monotonically related to each other.



11Uncertainties for a NN-based analysis

Precision / Optimality: NN(x) 6= ptrue(x|S+B)
ptrue(x|B)

Accuracy / Bias: pprediction(NN) 6= ptrue(NN).

The distribution of the (corrected) sim. is not correct.
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13How to estimate precision stat. uncerts.

You can always accomplish this by 
bootstrapping: making pseudo-datasets 

from resampling and then retraining.

It is important to fix the NN 
initialization so that you are not also 

testing your sensitivity to that.

This can be painful because it 
requires retraining many NNs.

Maybe can accomplish with one Bayesian NN?  See e.g. S. Bollweg, et al., 
SciPost Phys. 8, 006 (2020), 1904.10004 for a particle physics example.



14How to estimate precision syst. uncerts.

As with all systematic uncertainties, 
this is hard to quantify.

One component is due to the 
modeling of p(x) - more on this later.

Testing the flexibility of the network requires 
checking the sensitivity to the architecture 

(#layers, nodes/layer, etc.), the initialization, the 
training procedure (#epochs, learning rate, etc.)



15How to estimate bias stat. uncerts.

Can be estimated via 
bootstrapping.  Less painful here 

because the NN’s are fixed.

N.B. it may be possible to design a network that is designed to minimize uncertainty at 
inference.  This does not work in all cases, but early studies in particle physics seem 

promising: S. Wunsch et al., 2003.07186, P. da Castro et al., CPC 244 (2019) 170, 1806.04743



16How to estimate bias syst. uncerts.

This is the trickiest one…

…because we need the 
uncertainty on the modeling of x 
and x can be high-dimensional!

In many cases, the uncertainties factorize, e.g. the 
uncertainty on two photon energies can be 

decomposed into the uncertainty on each photon.

However, in many cases, we simply do not know the full 
uncertainty model (= nuisance parameters and their distribution)



17High-dimensional Bias Uncertainties

One word of caution: current paradigm for uncertainties 
may be too naive for high-dimensional analysis! 

e.g. for some uncertainties, we often compare two 
different models - one nuisance parameter.

(truly end-to-end)

How can we even see how sensitive we 
are to high-dimensional effects?



18High-dimensional Bias Uncertainties

One word of caution: current paradigm for uncertainties 
may be too naive for high-dimensional analysis! 

e.g. for some uncertainties, we often compare two 
different models - one nuisance parameter.

(truly end-to-end)

How can we even see how sensitive we 
are to high-dimensional effects?

Answer: borrow tools from AI Safety



19AI Safety

K. Eykholt et. al, 1707.08945

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions
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The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
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physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

There is a vast literature 
on how easy it is to 

“attack” a NN.
They want to know: how subtle 

can an attack be and still 
significantly impact the output.

We know (hope?!) 
that nature is not evil, 
but these tools can 
help us probe the 
high-dimensional 

sensitivity of our NNs.
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represents a worst-case scenario only for a specific class
of mismodeling. As it turns out, even this restricted form
of attack can have surprisingly large e↵ects; we leave the
assessment of sensitivity to more general attack models
to future work.

The adversarial network is trained by minimizing sep-
arate loss functions for signal and background defined
by:

Lsig = log(1� f(g(J))), (2)

Lbg = �cls(f(J)� f(g(J)))2

+
X

i

�(i)
obs(O

(i)(J)�O
(i)(g(J))2 . (3)

Lsig is the categorical crossentropy, which impels g to
modify signal jets so as to be labeled as background by f .
The first term of Lbg minimizes changes between the tar-
get network’s response to the jet before and after the ad-
versarial perturbation. The functions O(i)(J) : R3N

! R
represent any features of interest to be preserved. The

tunable hyperparameters �cls,�
(i)
obs � 0 encode the ad-

versary’s preference to preserve the target network re-
sponse and observable features, respectively, for back-
ground events.

In our experiments, g is a fully-connected network with
4 hidden layers, each with 300 units and ReLU activation.
The penultimate layer has 64⇥3 units, with tanh activa-
tion. Analogously to the sign function in Eq. 1 and the
bounding parameters ✏ in Sec. III A, the outputs of the fi-
nal layer are bounded by applying a tanh activation, and
the axes corresponding to pT, ⌘, and � are scaled by pa-
rameters ⇢pT , ⇢⌘, and ⇢�, respectively. The output of this
layer represents a di↵erential change in the input jet, �J .
The final layer is essentially a residual skip-connection
layer computing J + �J as described in Sec. IIIA.

Separate adversaries are trained for each of the HL
and LL benchmark networks. In all cases, the bounding
magnitude of the constituent perturbations are fixed at
~⇢ = 0.02, which is slightly larger than the scale of pertur-
bations for the FGSM. Two observable constraints are in-
cluded in Lbg: the jet mass and pT. The parameters �cls

and �obs are tuned by training until either convergence
or until certain validation criteria are violated. The val-
idation criteria are met when the Kolmogorov-Smirno↵
(KS) test statistic between perturbed and unperturbed
background distributions are below heuristically-defined
thresholds of 0.04 for jet mass and pT, and 0.02 for clas-
sifier response. In practice, these thresholds would be
set by the data statistics as well as the size of known
experimental uncertainties. A more realistic test in prac-
tice is to consider the �2 agreement between validation
histograms evaluated in an unblinded control region, as
illustrated in Fig. 1 for the case of the LL network.

FIG. 1: Illustration of typical validation procedure.
Pseudodata (black points) are sampled from the BG

distribution with the adversarial perturbation applied; solid
histograms show the unperturbed BG model. Top: The
unshaded control region in this case is defined where the

signal e�ciency is expected to be less than 10%; the shaded
region would typically be blinded when designing an

experiment. The green vertical line indicates the expected
optimal signal region. Middle, Bottom: The jet pT and mass

distributions for events in the control region. Good
agreement is observed between the “observed” pseudodata

and the expected background model in the control region for
all three observables. The �2/ndf values are 14.7/14,

25.0/40, and 37.8/40 repsectively.

IV. RESULTS

To quantify the e↵ect of these adversarial attacks, we
consider a simplified example of a typical experimental
analysis in HEP. If S and B are the predicted number of
signal and background events, respectively, then in the
asymptotic limit (S +B � 1, S ⌧ B [30]), the expected
statistical significance of an observation with respect to
the background-only hypothesis is S/

p
B, in units of

standard deviations. After considering only events that
pass a classifier threshold, the relative change in the sig-
nificance is ✏S/

p
✏B , where ✏S is the true positive rate

(signal e�ciency) and ✏B is the false positive rate (back-
ground e�ciency). A classifier is only useful for improv-
ing the sensitivity of a search if this relative discovery

significance exceeds unity. The relative discovery signif-

J = collision event (in all of its high-dimensional glory)

f = fixed classifier for signal vs. background

g is a learned NN that maps J to J + 𝛿J.

O(J) are observables that will be validated in the CR.
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ing is interruped early on, the susceptibility to the ad-
versarial attack is reduced, and tends to increase with
additional training. In particular, when the LL network
is trained only to the same level of performance as the
HL network, it is nearly impervious to the adversarial
attack. We hypothesize that the additional information
the LL network uses in order to outperform the HL net-
work is more sensitive to small-scale perturbations than
the theoretically-motivated HL observables. Although
this e↵ect seems to have spurious counterexamples due
to random network initialization, the trend may suggest
that undertraining very sensitive HDLL networks could
be be a useful regularization technique to build in analy-
sis robustness, while still providing a performance boost
relative to HL architectures.

FIG. 4: E↵ect of adversarial mismodeling on discovery
significance, for high-level and low-level feature networks.

The vertical gray line indicates the expected optimal
selection threshold, which di↵ers by about 25% from the

“true” significance when taking the adversarial perturbation
into account. The HL network’s expected sensitivity di↵ers
by about 15% from the true value. While the fully-trained
low-level network is expected to perform better than the
high-level network, it is also more strongly a↵ected by an
adversarial attack. However, when the LL network is

deliberately undertrained, its susceptibility is reduced. Also
shown is the e↵ect induced by randomly perturbing

constituents by a uniform distribution in the range [�⇢,+⇢].

Representative HL features and the classifier distribu-
tions for the adversarial attack are presented in Fig. 5.
Even though both signal and background jets are sub-
jected to the same adversary, the background distribu-
tions are nearly identical before and after the perturba-
tion. In contrast, the classifier response and mass dis-
tributions are noticeably distorted for the signal. This
allows the systematic mismodeling induced by the ad-
versary to go undetected in typical experimental condi-
tions, as shown in Fig. 1. The green line delineating
the signal region corresponds to the maximum discovery
significance expected based on the simulated signal and
background models. The shaded region, defined as the
region in which expected signal e�ciency exceeds 10%,
is taken to be blinded during experimental design and
validation phase. ‘Observations’ are samples from the
perturbed simulation and the ‘Expected’ prediction is
the unperturbed simulation. The jet pT and mass dis-

tributions in the validation region agree well between the
Observed and Expected values to within statistical un-
certainty. Despite this apparent agreement, due to the
adversary’s e↵ect on jets in the signal region, the dis-
covery sensitivity for a potential signal at the predicted
optimal working point is reduced by about 25% as shown
in Fig. 4.

FIG. 5: Comparison of the e↵ect the adversarial network
perturbations on the LL and HL classifier response, as well

as various jet observables.

21High-dimensional Uncertainty
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22How to reduce precision stat. uncerts.

Train with more events!



23How to reduce precision stat. uncerts.

Train with more events!

…maybe use NN’s to help with that

M. Paganini, L. de Oliveira, BPN, PRL 120 (2018) 042003, 1705.02355 in 
particle physics and many more studies that have followed.



24How to reduce precision syst. uncerts.

Might be possible to reduce uncertainties or at 
least alleviate analysis complexity by making your 
NN independent of known nuisance parameters*.

*see G. Louppe, et al., NIPS 2017, 1611.01046 for particle physics and many papers since.

…might also be better to explicitly depend on the 
nuisance parameters and profile them in data.



25How to get around high-D bias uncerts?

Work hard to understand the true nuisance 
parameters in the hypervariate parameter space.

In my opinion, this is THE biggest 
challenge with deploying NN-

based analyses … solving it will 
require hard physics work.



26How to get around high-D bias uncerts?

Work hard to understand the true nuisance 
parameters in the hypervariate parameter space.

Don’t use simulation!
(not always possible and of 

course, still has assumptions…)
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Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with mJ A ' 400 GeV and
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set limits
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J. Collins, K. Howe, BPN,  
Phys. Rev. Lett. 121 (2018) 241803, 1805.02664
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This has a long history in the 
“non-ML” case, with the latest 

result from CMS earlier this week.

see B. Knuteson et al., Aleph, D0, H1, CDF,  
CMS (“MUSiC”), ATLAS (“General Search”)

This can be super-charged with 
machine learning, see e.g. 

R. T. D’Agnolo and A. Wulzer, 
PRD 99 (2019) 015014, and R. T. 

D’Agnolo et al. 1912.12155

https://cds.cern.ch/record/2718811
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• M. Farina, Y, Nakai, D. Shih, PRD 
101 (2020) 075021, T. Heimel et al. 
SciPost Phys. 6 (2019) 030, and 
others

• O. Knapp et al., 2005.01598
• B. Dillon et al, 2005.12319 (today!)
• O. Amram and C. Suarez, 2002.12376
• BPN and D. Shih, PRD 101 (2020) 

075042
• J. Collins, K. Howe, BPN, PRL 121 

(2018) 241803, PRD 99 (2019) 
014038

• A. Andreassen, BPN, D. Shih, PRD 
101 (2020) 095004

• and more !

CWoLa
ANODE

LDA

SALAD

TNT

autoencoders
GAN

See anomaly detection section of https://iml-wg.github.io/HEPML-LivingReview/
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CWoLa
ANODE

LDA

SALAD

TNT

autoencoders
GAN

ABCD

Control 
region 

method

Pure MC 
prediction

Direct Density 
estimation, Sideband

It is not enough to be sensitive to signal, need to also calibrate background !  Can 
mix and match some methods - some pairings are more natural than others.



33Anomaly detection future

Rapidly developing 
area - LHC Olympics 
2020 to help facilitate!

G. Kasieczka. BPN, D. Shih
https://lhco2020.github.io/homepage/

Summer Olympics 
will be virtual:

https://indico.desy.de/
indico/event/25341/



Deep learning has a great 
potential to enhance, 

accelerate, and 
empower HEP analyses

The full phase space of our experiments is now explorable, 
but we need to be cautious about new challenges from 

uncertainty quantification in high dimensions

34Conclusions and outlook
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I did not do justice to these 
topics, but many of them 

have been covered in other 
talks in this track!


