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Data analysis in HEP
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Data analysis in HEP + Deep Learning
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particle identification
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Data analysis in HEP + Deep Learning

N

Outline for today

Uncertainty on
simulation-based
inference

The landscape of
simulation-independent
Inference



Uncertainties

But what are the uncertainties on the NN”7

- question asked by every reviewer



Uncertainties

But what are the uncertainties on the NN”7

- question asked by every reviewer

Let’s consider this question in the context of
a search for new particles in collision events.



1. Train a classitier (in sim.)
for signal vs. background.
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Uncertainties for a NN-based analysis

Bad use of our data, time, money, etc. but not wrong.



Uncertainties for a NN-based analysis

!

Optimal by Neyman-Pearson

(no nuisance parameters)



Uncertainties for a NN-based analysis

The distribution of the (corrected) sim. is not correct.



Uncertainties for a NN-based analysis

Ptrain (m) 75 ptrue(m)
Inaccurate training data

NN (X) true ($|S+B)

?é p
Ptrue=Ptrain DPtrue (::ClB)

limited training statistics

model/optimization flexibility

Statistical uncertainty Systematic uncertainty

Pprediction (33 ) 7’é Ptrue (33)

limited prediction statistics , .
Inaccurate prediction data

BPN, 1909.03081



How to estimate precision stat. uncerts.

Dtrain (w) 7é DPtrue (.’L‘)

inaccurate training data . .
mearanngsesies v, 2m=czm YOU CAN @lways accomplish this by

model/optimization flexibility

bootstrapping: making pseudo-datasets
Prsesn(2)# w2 from resampling and then retraining.

inaccurate prediction data

limited prediction statistics

Accuracy / Bias: Pprediction (NN) 7é Dtrue (NN)

It iIs iImportant to fix the NN
initialization so that you are not also
testing your sensitivity to that.

This can be painful because it
requires retraining many NNs.

Maybe can accomplish with one Bayesian NN? See e.g. S. Bollweg, et al.,
SciPost Phys. 8, 006 (2020), 1904.10004 for a particle physics example.



How to estimate precision syst. uncerts. \

p rain(x) #p rue(x) . . ' '
As with all systematic uncertainties,
limited training statistics N poosmponss 7 p;:u(ex(lsglf . . .
model/optimization flexibili th 1S |IS h a rd O q uanti fy
Systematic uncertainty

Pprediction (SL') 7& Ptrue (iE)

inaccurate prediction data

e One component is due to the
modeling of p(x) - more on this later.

limited prediction statistics

Testing the flexibility of the network requires
checking the sensitivity to the architecture
, the Initialization, the
training procedure



How to estimate bias stat. uncerts.

Ptrain(T) 7 Pirue(T)
inaccurate training data
limited training statistics NN () porosmprss 7 p;:reu(ex(IZSE?) C b t- t d '
model/optimization flexibility a n e e S I m a e V I a
Statistical uncertainty bOOtStrapplng . I_eSS palnfL” here
- - - Pprediction (z) # Ptrue() ) 1
limited prediction statistics - b ecayse t h e N N S are f |IXe d .

Accuracy / Bias: Pprediction (NN) 7é Dtrue (NN)

N.B. it may be possible to design a network that is designed to minimize uncertainty at
inference. This does not work in all cases, but early studies in particle physics seem
promising: S. Wunsch et al., 2003.07186, P. da Castro et al., CPC 244 (2019) 170, 1806.04743



How to estimate bias syst. uncerts.

Sy Ve This is the trickiest one...

Inaccurate training data
limited training statistics true (2|S+B
g NN(X)|ptrue:ptrain # pptru(ex(lz|B )

model/optimization flexibility

Systematic uncertainty . beCEIUSG we ﬂeed the
uncertainty on the modeling of x
and x can be high-dimensional!

limited prediction statistics

In many cases, the uncertainties factorize, e.g. the
uncertainty on two photon energies can be
decomposed into the uncertainty on each photon.

However, in many cases, we simply do not know the full
uncertainty model (= nuisance parameters and their distribution)



High-dimensional Bias

Uncertainties

One word of caution: curren
may be too naive for hig

- paradigm for uncertainties

n-dimensional analysis!

e.g. for some uncertainties, we often compare two

different models - one

nuisance parameter.



High-dimensional Bias

Uncertainties

One word of caution: curren
may be too naive for hig

- paradigm for uncertainties

n-dimensional analysis!

e.g. for some uncertainties, we often compare two

different models - one

nuisance parameter.

Answer: borrow tools from Al Safety
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There Is a vast literature
on how easy it is to
“attack” a NN.

They want to know: how subtle
can an attack be and still
significantly impact the output.

i ing | QoL SPEED

MﬂdeIFh'g.rsmalljvna_m:c% by Sampling () 5 y Output  ° it

We know (hope”!) from Distrbution 0707145
that nature is not euvil, | t Target

but these tools can
help us probe the
high-dimensional
sensitivity of our NNSs.

Perturbed Stop Sign Under

Varying Distances/Angles

kholt et. al, 1707.08945



Bounding high-dim. uncerts: strategy

J = collision event (in all of its high-dimensional glory)

f = tixed classifier for signal vs. background

gis a learned NN that maps Jto J + éJ.

O(J) are observables that will be validated in the CR.



High-dimensional Uncertainty
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How to reduce precision stat. uncerts.

Dtrain (l’) 7é DPtrue (-'L')
inaccurate training data

limited training statistics NN () |perseperas 7 % Tra i n W i t h m O re eve n tS !

model/optimization flexibility

Statistical uncertainty

Systematic uncertainty

Pprediction (SL') 7é Ptrue (-'E)

limited prediction statistics : .
inaccurate prediction data

Accuracy / Bias: Pprediction (NN) F Dtrue (NN)




How to reduce precision stat. uncerts.

limited training statistics

Statistical uncertainty

Dtrain (37) 7é DPtrue (.’L‘)
inaccurate training data

NNy, . P20 Train with more events!

model/optimization flexibility

limited prediction statistics el ) ) .o m ay b e U S e N N ,S to h e | p W i t h th at

inaccurate prediction data

Accuracy / Bias: Pprediction (NN) 7é DPtrue (NN)

M. Paganini, L. de Oliveira, BPN, PRL 120 (2018) 042003, 1705.02355 in
particle physics and many more studies that have followed.



How to reduce precision syst. uncerts.

Dtrain (.Z') 7é Dtrue (37)

Inaccurate training data
limited training statistics Ptrue(z[S+B
g N(X) |ptrue:ptrain # tptrue (Z|B)

model/optimization flexibilit

Statistical uncertainty Systematic uncertainty

Pprediction (SL') 7& Ptrue (iE)

limited prediction statistics : .
inaccurate prediction data

; N A H ‘
1 [ ] tru

Might be possible to reduce uncertainties or at
least alleviate analysis complexity by making your
NN independent of known nuisance parameters™.

...might also be better to explicitly depend on the
nuisance parameters and profile them in data.



How to get around high-D bias uncerts?

Work hard to understand the true nuisance
parameters in the hypervariate parameter space.

Dtrain (33') 7é Dtrue (.’L’)

In my opinion, this is THE biggest

limited training statistics true (2|S+B)
g NN(X)|ptrue=ptrain # pptruem(mlB)

model/optimization flexibility Chal |enge Wlth deplOyl ng N N—
i > based analyses ... solving it will

require hard physics work.

limited prediction statistics




How to get around high-D bias uncerts?

Work hard to understand the true nuisance
parameters in the hypervariate parameter space.

No signal With signal

Don’t use simulation!

(not always possible and of
course, still has assumptions...)

Pr(data | background)

2500 3000 3500 2500 3000 3500
Invariant mass [GeV/c?]



The landscape of model dependence
g

Standard
Model

background model independence

signal model independence signal model independence

Signal sensitivity Background specificity

B. Nachman, D. Shih, 2001.04990



The landscape of model dependence

Most searches
(train with
simulations)
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Standard
Model

signal model independence

Signal sensitivity

e.g. simulate
signal, simulate
background, train
a classifier (by
hand, or with ML)



The landscape of model dependence
g

Standard
Model

e.g. Signal
simulation versus
Most searches calibration data
(train with
simulations)

signal model independence

Signal sensitivity



The landscape of model dependence
g

Standard
Model

This has a long history in the
“non-ML” case, with the latest
result from CMS earlier this week.

see B. Knuteson et al., Aleph, DO, H1, CDF,
CMS (“MUSIC”), ATLAS (“General Search”)

Most searches

(train with This can be super-charged with
simulations) machine learning, see e.g.
R. T. D’Agnolo and A. Wulzer,
signal model independence PRD 99 (2019) 015014, and R. T.

D’Agnolo et al. 1912.12155

Signal sensitivity


https://cds.cern.ch/record/2718811

The landscape of model dependence

(b

- . e M. Farina, Y, Nakai, D. Shih, PRD
e auloencacers 101 (2020) 075021, T. Heimel et al.
O LDA SciPost Phys. 6 (2019) 030, and

9 TNT ANODE others

= CWola e O. Knapp et al., 2005.01598

[0 SALAD e B. Dillon et al, 2005.12319 (today!)

o e O. Amram and C. Suarez, 2002.12376
E | Most searches e BPN and D. Shih, PRD 101 (2020)

_8 (train with 075042

o | simulations) e J. Collins, K. Howe, BPN, PRL 121

_g’ (2018) 241803, PRD 99 (2019)

3 signal model independence 014038

e A. Andreassen, BPN, D. Shih, PRD

. . 101 (2020) 095004
Signal sensitivity e and more |

Standard
Model

See anomaly detection section of https://iml-wg.github.io/HEPML-LivingReview/



The landscape of model dependence

8 8 Direct Density

o autoencoders s estimation, Sideband
2 GAN 2
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Signal sensitivity Background specificity

It is not enough to be sensitive to signal, need to also calibrate background ! Can
mix and match some methods - some pairings are more natural than others.



Anomaly detection future

Rapidly developing
area - LHC Olympics
2020 to help facilitate!

Summer Olympics
will be virtual:
https://indico.desy.de/
indico/event/25341/

G. Kasieczka. BPN, D. Shih
https.://lhco2020.github.io/homepage/



Conclusions and outlook

Deep learning has a great
potential to enhance,
accelerate, and
empower HEP analyses

| did not do justice to these
topics, but many of them
have been covered in other
talks in this track!

The full phase space of our experiments is now explorable,
but we need to be cautious about new challenges from
uncertainty quantification in high dimensions




