Timing at LHCb post LS4

8th annual conference on Large Hadron Collider Physics (LHCP)

C. Betancourt on behalf of the LHCb Collaboration

25 05 2020

The LHCb Upgrade II

[Expression of Interest for a Phase-II LHCb Upgrade, 2017] [Luminosity scenarios for LHCb Upgrade II, 2019]

- ► Major detector upgrade during LS4 of LHC ~ 2030
- $\mathcal{L} = 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ $\times 7.5 \text{ increase from U1}$
- ▶ 300-350 fb⁻¹
- ▶ Very challenging environment
 - $ightarrow \sim$ 42 Pile-up
 - \rightarrow 1.5-3.5k charged particles per bunch-crossing
 - \rightarrow Increase ghost rate and PV mismatch
 - $\rightarrow \times 10$ radiation dose

The LHCb Upgrade II

[Expression of Interest for a Phase-II LHCb Upgrade, 2017] [Luminosity scenarios for LHCb Upgrade II, 2019]

- Major detector upgrade during LS4 of LHC ~ 2030
- $\mathcal{L} = 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ × 7.5 increase from U1
- ▶ 300-350 fb⁻¹
- ► Very challenging environment
 - $ightarrow \sim$ 42 Pile-up
 - \rightarrow 1.5-3.5k charged particles per bunch-crossing
 - \rightarrow Increase ghost rate and PV mismatch
 - ightarrow imes 10 radiation dose
- Many subsystems with fast timing VELO, RICH, TORCH, ECAL

Role of timing in detector performance

- Suppress combinatorics & enabling time-dependent CP-violation measurements
- Correct PV association/reconstruction
- Increase in tracking efficiency and matching
- Reduction in ghost rate
- ► PID and Calorimetry

The upgrade of the VELO detector

- ► VErtex LOcator: Silicon pixel detector
- ~ 200 ps time resolution needed to keep PV mismatch to current performance
- ightharpoonup 4D tracking: hits separated in time ightharpoonup 170 ps RMS
 - → tens of ps/hit to distinguish spatially overlapping hits
- ► Fast timing needed to maintain adequate efficiency
- Needs to cope with high radiation environment without sacrificing spatial and timing resolution
 - ightarrow Up to $\sim 10^{17}~1~\text{MeV}~\text{n}_{eq}/\text{cm}^2$
- ▶ 50 ps/hit, 20 ps/track seems optimal

Detector technologies for VELO

- ASIC: Based on VeloPix/TimePix family
- Some options include:
 - Thin Planar
 - LGADs
 - 3D
 - Monolithic design
 - Others (Diamond, CMOS, ...)
- No single technology exist yet (ASIC or sensors) that satisfies: small pixel size, fast timing, rad-hard

Timing with RICH

 RIng Imaging CHerenkov (RICH) detectors

- Same occupancy level of current RICH1 needs:
 - smaller pixel size Precise timing
 - Timing information can improve pattern recognition and ratio of signal photons to background
- Separating different PV using hit time:
 - 0.2-1 ns/photon ightarrow 50-150 ps/track
 - Resolution of 1 ns enough to reject out of time photons
 - 3 ns gate to remove background (sim)
 - a few % in RICH1, $\sim 10\%$ in RICH2

TORCH

- Time Of internally Reflected CHerenkov light
- ► ToF Detector
- Comprises position-sensitive Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMT) detectors
- $\begin{array}{c} \hbox{ Time resolution:} \\ \sim 70 \ \hbox{ps/photon} \\ \rightarrow \sim 15 \ \hbox{ps/track} \end{array}$
- Fast timing helps with:
 - Possibly suppressing ghosts stemming from mismatching between VELO & UT
 - Timestamp particles decaying after VELO
 - ToF measurement to improve low momentum 2-10 GeV/c PID of π/K

[Expression of Interest for a Phase-II LHCb Upgrade, 2017]

A large-scale TORCH demonstrator

- \blacktriangleright Quartz plate of dimensions 660 \times 1250 \times 10 $\,$ mm 3
- ▶ Read out by customized 53 × 53 mm² MCP-PMTs with 8 × 128 pixel-equivalent granularity
- ► Tested at CERN PS T9 beamline at 8 GeV/c
- ▶ 70 ps/photon time resolution

[T. H .Hancock et al., Nuclear Inst. & Meth. , A 958 (2020)]

ECAL

- Challenge to optimize simultaneously energy resolution, radiation hardness, cell size
- ► Fast timing:
 - Suppress combinatorics when forming π^0 candidates and $\emph{b}\text{-hadron}$ decays
 - Allow combinatorics from high pile-up to be rejected

Timing in ECAL

- Spatial and timing provided by silicon detectors
- Embedded in the absorber layers or at front of the module OR Deeper within detector to benefit from larger signal
- ▶ Time resolution of a few tens of ps needed

Summary

- ► LHCb Upgrade 2 will provide a challenging detector environment
- ▶ ×10 higher Luminosity
 - \rightarrow Increased Pile-up, ghost rate, PV mismatch and radiation dose
- Fast timing in many subsystems becomes crucial to maintain physics performance
 VELO, RICH, TORCH, ECAL

