

WHY **HH**?

Knowledge

<u>Assumption</u>

Higgs potential: least explored region of SM!

- EWK physics well understood (so far?)
- Higgs couplings to EWK bosons observed and extensively studied
- Higgs Yukawa couplings to 3rd generation observed to follow SM (bb, tt, ττ)

But could be the key to unlock BSM physics!

• Cosmological inflation, EWPT & Baryogenesis, Compositeness, 2HDM, etc... Strong BSM potential to modify Higgs self coupling λ

Only directly accessible through HH production!

ACCESSING HH AT THE LHC

Interesting but rare...

 $\sigma_{NNLO}^{\text{FTApprox}}(\text{SM}) = 31.05 \text{ fb}$

 $\kappa_{\lambda} = \lambda/\lambda^{SM}$ also dictates signal kinematics:

HH CURRENT STATUS (1)

[As summarized in HH White Paper]

Search channel	Collaboration	95% CL Upper Limit	
		observed	expected
$bar{b}bar{b}$	ATLAS [PAPER]	13	21
	CMS [PAPER]	75	37
$bar{b}\gamma\gamma$	ATLAS [PAPER]	20	26 CMS
	CMS [PAPER]	24	
$bar{b} au^+ au^-$	ATLAS [PAPER]	12	25 29
	CMS [PAPER]	32	25
$b\bar{b}VV^* \left(\ell \nu \ell \nu\right)^*$	ATLAS [PAPER]	40^{+140} not in cor	nbination 29
	CMS [PAPER]	79	89
$b\bar{b}WW^*$ (ℓvqq)	ATLAS [PAPER]	305	305
	CMS	_	<u> </u>
$WW^*\gamma\gamma$	ATLAS [PAPER]	230	160
	CMS	_	
WW^*WW^*	ATLAS [PAPER]	160	120
	CMS	_	
Combined	ATLAS [PAPER]	6.9	10
	CMS [PAPER]	22	13

ATLAS and CMS Expected Upper Limits ~10 x SM

Same most sensitive channels in ATLAS and CMS:

 $HH \rightarrow b\bar{b}b\bar{b}$ (4b), $b\bar{b}\tau^+\tau^-$, and $b\bar{b}\gamma\gamma$

Complementary channels:

4b (high mass region, $M_{HH} \gtrapprox 400$ GeV),

 $bb\gamma\gamma$ (low mass region, $M_{HH}\lessapprox 400$ GeV)

 $bar{b} au^+ au^-$ (intermediate mass region, $M_{HH}pprox400$ GeV)

S

Rafael

Teixeira

d e

Lima

[SLAC]

 $-5.0(-5.8) < \kappa_{\lambda} < 12.0(12.0)$ Observed (Expected)

 $-11.8(-7.1) < \kappa_{\lambda} < 18.8(13.6)$ Observed (Expected)

Analyses sensitivities vary strongly with κ_{λ}

• Signal kinematics and thus acceptance are κ_{λ} dependent!

Need more data!

Unfortunately, still not close to SM sensitivity...

HIGH-LUMINOSITY LHC

Review of ATLAS HL-LHC Upgrades (LHCP 2020)

Review of CMS HL-LHC Upgrades (LHCP 2020)

Current HH results use ~ 1% of expected full HL-LHC dataset!

HH @ HL-LHC

- ~20% larger cross section, but much more difficult environment!
 - Higher PU ightarrow lower sensitivity to $\kappa_{\! \lambda}$ variations (low M_{HH})

Need LHC experiments upgrades to cope with challenges!

HHHL-LHC PROSPECTS: STRATEGIES

How to assess HH sensitivity at HL-LHC? Different strategies!

• Extrapolating current Run 2 results

- Assumption: object performance not degraded due to higher PU (detector upgrades), Run 2 detector uncertainties
- Pessimistic: No new analysis strategies from larger dataset; expect better e/μ triggers in HL-LHC;...
- Optimistic: Multijet/tau trigger performances

• Devising new analyses/strategies to cope with larger dataset in new conditions

- Parametrized detector response according to expected HL-LHC upgraded simulation performances, improved detector acceptance (e.g., tracker coverage)
- Pessimistic: Object reconstruction algorithms not highly optimized for HL-LHC, can be better!
- Optimistic: Significant improvements from ML-based techniques with large datasets (for example)

HH@HL-LHC: ATLAS (1)

$HH o b ar{b} b ar{b}$ analysis

- Extrapolated from early Run 2 analysis
- Multijets (main background) estimated with data
- Pessimistic background estimation uncertainty
- Sensitivity vs background uncertainty assumptions studied

Final
discriminant
with datadriven
(multijet) and
MC-based ($t\bar{t}$)
backgrounds

HH@HL-LHC: ATLAS (2)

$HH \rightarrow b\bar{b}\gamma\gamma$ analysis

- New analysis on parametrized performance simulation
- BDT to discriminate [$\gamma\gamma$ +multijet+SM single Higgs] and signal
- Fit on $M_{H\!H}$ bins w/ window selection on $M_{\gamma\gamma}$

Continuous and resonant (single Higgs) MC-based background and signal distributions in $M_{\gamma\gamma}$

$HH \rightarrow b\bar{b}\tau^+\tau^-$ analysis

- Extrapolated from early Run 2 analysis
- BDT to discriminate signal and background in $\tau_h \tau_h$ category, and $e \tau_h + \mu \tau_h$ categories
- Norm. uncertainty largely reduced for backgrounds constrained in data (statistical)

• Sensitive to MC statistical precision - considered

separately

H @ H L - L H C: C M S (1)

$HH \rightarrow b \bar{b} b \bar{b}$ analysis

- Analysis on parametrized detector simulation (DEPLHES)
- Complimentary topologies:
- *Resolved*: BDT-based, SM and κ_{λ} constraints
- Boosted: large-R jet based, EFT interpretation (high M_{HH})

Resolved
analysis final
discriminant
(BDT-based),
with MC-based
background
components

$HH \rightarrow b\bar{b}\tau^+\tau^-$ analysis

- Dedicated DELPHES analysis
- Neural network used to discriminate signal and background in $\tau_h \tau_h$, $e \tau_h$ and $\mu \tau_h$ categories

Example distribution of discriminating variable in μau_h neural network

H @ H L - L H C: C M S (2)

$HH \rightarrow b\bar{b}\gamma\gamma$ analysis

- Dedicated DELPHES analysis
- BDT-based $t\bar{t}H$ mitigation; BDT for signal-purity categories
- Extra categorization on M_{HH} (sensitivity to both SM and κ_{λ} variations, solving κ_{λ} degeneracy)

Pseudodata
generated from
Asimov fit to MC
signal and
background
distributions

Other Channels:

- $HH \rightarrow b\bar{b}WW(\ell\nu\ell\nu)$:
 - (DELPHES) Based on neural network discriminants
- $HH \rightarrow b\bar{b}ZZ(4\ell)$:
 - Very low stats, single Higgs and $t \bar{t} Z$ as only backgrounds
- Less sensitive but contribute to combination

RESULTS: SM HH CROSS SECTION

[ATL-PHYS-PUB-2018-053]

[CMS-PAS-FTR-18-019]

SM HH Signal	Statistical-only		Statistical + Systematic	
Significances	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \rightarrow b\bar{b}\tau^+\tau^-$	2.5	1.6	2.1	1.4
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \rightarrow b\bar{b}VV^*$	_	0.59	_	0.56
$HH \rightarrow b\bar{b}ZZ(4\ell)$	_	0.37	_	0.37
Combination	3.5	2.8	3.0	2.6
	4.5		4.0	

Roughly ~3σ sensitivity from each experiment!

Simple ATLAS+CMS combination:
~4σ sensitivity to SM HH

- $b\bar{b}\tau^+\tau^-$ ($b\bar{b}\gamma\gamma$) most sensitive channel in ATLAS (CMS)
- ullet CMS $bar{b}VV$ channels with subleading contribution

Combination performed in the context of <u>1902.00134</u>

RESULTS: κ_{λ} SENSITIVITY

Combination performed in the context of <u>1902.00134</u>

 $b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$ leading combination sensitivity:

$$0.1 \le \kappa_{\lambda} \le 2.3 @ 95 \% CL$$

COMMON CHALLENGES: TRIGGERS

HL-LHC trigger and DAQ performance extremely important for HH sensitivity!

• "Nominal" results assume Run 2-like triggers (optimistic), but performance studied for different scenarios for channels with higher trigger dependencies ($b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$)

COMMON CHALLENGES: THEORY & MC

MC statistical precision have strong impact on channels such as $b\bar{b}\tau^+\tau^-$

Nominal extrapolated results decouple MC statistics, but impact quantified

ATLAS+CMS also assume theory uncertainties to be reduced by x2 (calculations improvements)

- Important for constraining single Higgs backgrounds, particularly for $b\bar{b}\gamma\gamma$
- Potentially improve single Higgs with constraints directly from data

BEYOND TREE-LEVEL

Combination performed in the context of <u>1902.00134</u>

Combining differential Higgs+HH measurements helps constrain κ_{λ}

• Especially useful when HH self-coupling measurement becomes sensitive to other Higgs couplings (profile them in single Higgs analyses)

CONCLUSIONS

HH production is key to understand the Standard Model

Still inaccessible with current LHC dataset.

"Coffee break" discussion after parallel sessions (16:15-16:30):

https://stanford.zoom.us/j/98997054638 (same pwd as current session)

HL-LHC experiments *should* be ideal tools for HH process

- Current prospects: ~4 σ sensitivity to SM, $0.1 \le \kappa_{\lambda} \le 2.3 @ 95 \%$ CL (ATLAS+CMS)
 - Need to ensure HL-LHC detector performances are optimal enough for this result
- ATLAS and CMS HL-LHC trigger systems need to be optimized to ensure discovery!
- Low energy events are particularly important for constraining κ_{λ} , but very challenging to trigger under PU 200

Extra:

- Indirect constraints κ_{λ} (single Higgs measurements) will be important, particularly with 3000 fb⁻¹
- VBF HH can also help unlocking HH physics (e.g., HHVV coupling, c_{2V}) and will be particularly benefited by HL-LHC upgrades (VBF tagging, PU suppression) no prospects so far, first ATLAS Run 2 dedicated analyses out!

Backup

SUMMARY OF HL-LHC UNCERTAINTIES

Source	Uncertainties	
Luminosity	1-1.5%	
Muon efficiency (ID, iso)	0.1- $0.4%$	
Electron Efficiency (ID, iso)	0.5%	
Tau efficiency (ID, trigger, iso)	5% (if dominant 2.5%)	
Photon efficiency (ID, trigger, iso)	2%	
Jet Energy Scale	1-2.%	
Jet Energy Resolution	1-3%	
b-jet tagging efficiency	1%	
c-jet tagging efficiency	2%	
light jet mis-tag rate	5% (at 10% mis-tag rate)	

Summary of the systematic uncertainties used to extrapolate the results at the HL-LHC by ATLAS and CMS

 Kinematic dependencies and the operating points are taken into account when applicable

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ HLHELHCCommonSystematics

Assuming b-tagging systematic uncertainties reducing by 2x