

Vector Boson Scattering at the HL-LHC

Sandhya Jain, IP2I on behalf of the ATLAS and CMS collaborations

26 May, 2020

LHCP, Online

Introduction

ulletdiscovered Higgs boson preserves the unitarity of the longitudinal polarised VV scattering.

- Clean signature with two forward jets with large dijet invariant mass and $|\Delta \eta|$ gap

26 May, 2020

Vector boson scattering (VBS) is the production of VV (V = W/Z/ γ) involving EWK triple and quartic gauge couplings, and Higgs boson exchange at tree level. Provides a test of EWK Symmetry Breaking - still to be proven that presence of

HL-LHC prospects for VBS measurements

LHC / HL-LHC Plan

- ATLAS and CMS projections of VBS at HL-LHC lacksquare
 - Assume 200 pile-up, CM energy of 14 TeV

To cope with the increased lumi, radiation and pile-up challenges, both ATLAS and CMS need upgrades. 26 May, 2020 Sandhya Jain @LHCP, Online

Inst. lumi 5 - 7.5 x 10 $^{-34}$ (gain of ~ 5 - 7.5 compared to Run II) - Integrated lumi up to 3 ab $^{-1}$

Overview of CMS and ATLAS upgrades

ATLAS all-silicon Inner Tracker (ITk)

Trigger/HLT/DAQ

- Track information in L1-Trigger
- HLT output 7.5 kHz

New Endcap **Calorimeters**

• 3D capable

New Tracker

- significant less material
- Extended coverage to h=4

- Barrel: Crystal +SiPM
- New silicon tracker/inner detector with extended η (upto $|\eta| < 4$) coverage for both ATLAS and CMS detectors
- New FE electronics in calorimeters for both ATLAS and CMS allowing higher trigger rate
- New timing detector for both ATLAS and CMS
- Upgraded muon system and coverage for ATLAS
- New Highly granular forward calorimeter for CMS 26 May, 2020

Overview of VBS measurements at the HL-LHC

Experiment	ssWWjj	WZjj	ZZjj	VV semileptonic	Ζγ	W γ
ATLAS	<u>ATL-PHYS-</u> <u>PUB-2018-052</u>	<u>ATL-PHYS-</u> <u>PUB-2018-023</u>	<u>ATL-PHYS-</u> <u>PUB-2018-029</u>	<u>ATL-PHYS-PUB-2018-022</u>	_	-
CMS	<u>CMS-PAS-</u> <u>FTR-18-005</u>	<u>CMS-PAS-</u> <u>FTR-18-038</u>	<u>CMS-PAS-</u> <u>FTR-18-014</u>	Ξ	Ξ	=

Most of the results have been extrapolated from the 13 TeV analysis with corrections for cross sections and parameterised efficiencies using fast simulation or full-detector simulation.

These projections are done with upgraded detector configurations.

Summarised in <u>Yellow Report</u>

Summary of RunII results in backup. For detailed update on Run2, please see Christian Gütschow's talk on Thursday

26 May, 2020

Systematics assumptions for HL-LHC

Run-2 scenario:

• no change in systematics, propagated as it is.

YR18 scenario :

• Theoretical uncertainties are reduced by a factor of two compared to the current situation, • Experimental ones go as ~ $1/\sqrt{L}$ until they hit the detector capabilities [Yellow Report]

ssWWjj - Extraction of the cross section uncertainty

- the WW EWK cross section measurement.
- ATLAS uses different systematics assumptions compared to CMS

26 May, 2020

• 1D binned maximum likelihood fit to the invariant mass distribution of jets (m_{jj}) is used to measure the uncertainty of

ssWWjj - Longitudinal scattering measurement

- The total VBS scattering cross section can be decomposed in the polarised components based on the W decays, when both W bosons are longitudinally (LL) or transversely (TT) polarised, as well as for the mixture (LT).
- LL component is $\sim 6-7\%$ of the total VBS cross section with Pt jet > 50 GeV.
- $\Delta \varphi_{ii}$ distribution used to discriminate LL from LT+TT.

26 May, 2020

ssWWjj - Longitudinal scattering measurement results

- Expected to go above 3σ if both experiments combine their results beyond 2 ab ⁻¹

Here multivariate based analysis could possibly improve the results.

• Using a simultaneous fit to $\Delta \varphi_{ii}$ and two mass regions of m_{ii} , significance from CMS is found to be up to 2.7 σ for L = 3 ab ⁻¹

WZjj - Extraction of the cross section uncertainty

- (BDT)
- dijet angular separation.

26 May, 2020

WZjj - Longitudinal scattering measurement

- ATLAS explored $\cos\theta^*$ as discriminating variable for polarised fraction of Z/W.
- Exp. significance for single longitudinal polarisation fraction of the Z bosons ~ 2 to 3σ
- CMS used jet based kinematics very similar to the distribution in last slide to extract the LL fraction significance and is found to be 1.6 σ for L = 3 ab ⁻¹

26 May, 2020

Here also MVA based analysis to better discriminate against background could possibly improve the results. 11 Sandhya Jain @LHCP, Online

ZZjj - Extraction of the cross section uncertainty and Longitudinal scattering measurement

- Most challenging (high theoretical uncertainty on QCD-ZZjj process)
- ggZZ background yield.
- for both Run-2/YR-18 scenarios at L = 3 ab $^{-1}$
- The precision ~ 20% (with 5% thr. unc.) for ATLAS and ~8.5% for YR-18 scenario at CMS.

ALTAS uses 3 different assumptions on QCD ZZ systematics while CMS uses both Run-2/YR-18 scenarios with 10% unc. on

ATLAS use mij while CMS uses BDT to differentiate EWK and QCD ZZjj processes. Can be observed with significance ~ 13.0 σ

_HCP, Online

VV(qqll)jj

- Different analysis as deals with hadronic decays.
- are used to extract the results by simultaneous binned maximum-likelihood fit
- are 18% at 300 fb⁻¹ and 6.5% at 3000 fb⁻¹

26 May, 2020

BDT are chosen as the discriminants. BDT distributions in the signal regions and the W+jets and tt control regions

The expected significance for the SM VBS process is 5.7 σ at 300 fb⁻¹. The expected cross section uncertainties

Sandhya Jain @LHCP, Online

Expected

Summary

- Measurement on VBS production are presented for phase-2 ATLAS and CMS detectors at the HL-LHC
- Still challenging at HL-LHC even with combination of ATLAS and CMS.
- Expected cross-section uncertainties < 10% for integrated lumi of 3 ab ⁻¹ Potential for establishing longitudinal VV scattering is shown
- - More sophisticated analysis and techniques (like MVA) needed to do better

Runll results from VBS observation

Summary of observed significances at 13 TeV

Experiment	ssWWjj	WZjj	ZZjj	VV semileptonic	Ζγ	Wγ
ATLAS (36 fb-1)	6.5σ arXiv:1906.03203	5.3 σ arXiv:1812.09740	5.5σ <u>Atlas-</u> <u>Conf-2019-033</u>	2.7 σ arXiv:1905.07714	3.9σ arXiv:1910.09503	_
CMS (35.9 fb-1)	5.5σ arXiv:1709.05822	2.2 σ arXiv:1901.04060	2.7 σ arXiv:1708.02812	No SM measurement arXiv:1905.07445	3.9 <i>σ</i> <u>CMS-PAS-SMP-18-007</u>	_

For detailed update on Run2, please see Christian Gütschow's talk on Thursday

WZjj - Longitudinal scattering measurement

26 May, 2020

