Physics perspectives with future hadrons colliders

Michele Selvaggi
CERN

LHCP ’20 - Online
Motivations for pp colliders beyond the LHC

• Future projects in HEP have two objectives:

 • explore the energy frontier, since solutions to known and un-explained phenomena beyond the standard model might be within reach at the next high energy collider:
 • Dark Matter
 • Neutrino mass
 • Matter-antimatter asymmetry

 • measure to high precision the physics of the electroweak symmetry breaking:
 • the shape of the Higgs potential
 • Higgs couplings, in particular to first two generations and gauge bosons → guaranteed deliverable!
The FCC project

Within the FCC collaboration (CERN as host lab), 5 main accelerator facilities have been studied:

- **pp-collider (FCC-hh)**
 - defines infrastructure requirements
 - $16 \, T \rightarrow 100 \, TeV$ in 100 km tunnel

- **ee-collider (FCC-ee):**
 - as a (potential) first step

- **ep collider (FCC-eh)**

- **HE-LHC :**
 - $27 \, TeV$ ($16T$ magnets in LHC tunnel)

- **Low E FCC-hh**
 - 100 km - 6T - 37 TeV

see Daniel Schulte’s presentation

CDRs and European Strategy documents have been made public in Jan. 2019

https://fcc-cdr.web.cern.ch/
Physics goals for a 100 TeV collider

- **Precision machine**
 - probe Higgs **self-coupling** to few % level, and %-level precision for top yukawa and 2nd generation.
 - measure **SM parameters** with high precision
 - exploit **complementarity with e^+e^-** by accessing rare decays/ **high dim.operators** (EFT) in extreme kinematic regimes (boosted)

- **Discovery machine**
 - **directly** probe new physics up to **unprecedented** scale
 - discover/exclude:
 - heavy resonances “strong” \(m(q^*) \approx 50 \text{ TeV} \), “weak” \(m(Z') \approx 40 \text{ TeV} \),
 - SUSY \(m(\text{gluino}) \approx 15 \text{ TeV} \), \(m(\text{stop}) \approx 10 \text{ TeV} \)

Physics program spans over very wide range of characters energy scales!
Inclusive SM cross sections

• Total pp cross-section and Minimum bias multiplicity show a modest increase from 14 TeV to 100 TeV

 → Levels of pile-up will scale basically as the instantaneous luminosity.

• Inclusive cross-section for relevant processes (single and HH) show a significant increase.

 • x 20-50 increase

 → interesting physics sticks out more!
Detector constraints from “threshold” physics

SM Physics produced at threshold is more forward @100TeV → in order to maintain sensitivity need large rapidity (with tracking) and low p_T coverage

- **Goals:**
 - Precision spectroscopy and calorimetry up to $|\eta| < 4$
 - Tracking and calorimetry up to $|\eta| < 6$
Detector constraints from “boosted” physics

- **The boosted regime:**
 - measure leptons, jets, photons, muons originating multi-TeV resonances

 Tracking: \(\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2} \)

 Calorimeters: \(\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \oplus B \)

 - Tracking target: \(\sigma / p = 20\% @10 \text{ TeV} \)
 - Muons target: \(\sigma / p = 10\% @20 \text{ TeV} \)
 - Calorimeters target: containment of \(p_T = 20 \text{ TeV} \) jets

\[\approx 11 \lambda_1 \text{ for EM + Had} \]
Detector constraints from “boosted” physics

- The boosted regime:
 - measure b-jets, taus from multi-TeV resonances
 - Long-lived particles live longer:
 - ex: 5 TeV b-Hadron travels 50 cm before decaying
 5 TeV tau lepton travels 10 cm before decaying
 - extend pixel detector further?
 - useful also for exotic topologies
 (disappearing tracks and generic BSM
 Long-lived charged particles)
 - re-think reconstruction algorithms:
 - hard to reconstruct displaced vertices
 - exploit hit multiplicity discontinuity
 - highly granular sub-detectors:
 - Tracker - pixel:10 μm @ 2cm → σ_{ηφ} ≈ 5 mrad
 - Calorimeters: 2 cm @ 2m → σ_{ηφ} ≈ 10 mrad

ex: W(10 TeV) will have decay products separated by
DR = 0.01 = 10 mrad
Why Higgs at future hadron colliders?

- **Large Higgs production rates (x20-60 cross-section wrt to LHC):**
 - access (very) rare decay modes (eg. 2nd gen.), complementary to ee colliders
 - push to %-level Higgs self-coupling measurement

- **Large dynamic range for H production (in $p_T^H, m(H+X), \ldots$):**
 - new opportunities for reduction of syst. uncertainties (TH and EXP)
 - develop indirect sensitivity to BSM effects at large Q^2, complementary to that emerging from precision studies (e.g. decay BRs) at $Q \sim m_H$

- **High energy reach:**
 - direct probes of BSM extensions of Higgs sector (e.g. SUSY)
 - Higgs decays of heavy resonances
 - Higgs probes of the nature of EW phase transition (strong 1st order? crossover?)
Why measuring Higgs @future hadron colliders

• 100 TeV provides unique and complementary measurements to ee colliders:

 • Higgs self-coupling
 • top Yukawa
 • Higgs → invisible
 • rare decays (BR(μμ), BR(Zγ), ratios, ..) measurements will be statistically limited at FCC-ee

• Assuming, we know production xsec and luminosity, at pp colliders we measure \(\text{BR}(i) = \frac{\Gamma_i}{\Gamma_H} \)

• By performing measurements of ratios of couplings, (or BRs), FCC-ee allows to “convert” relative measurements into absolute via HZZ

\[
\text{BR}(H \to XX) / \text{BR}(H \to ZZ) \approx \frac{g_X^2}{g_Z^2}
\]

<table>
<thead>
<tr>
<th></th>
<th>HL-LHC</th>
<th>FCC-ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta \Gamma_H / \Gamma_H (%))</td>
<td>SM</td>
<td>1.3</td>
</tr>
<tr>
<td>(\delta g_{HZZ} / g_{HZZ} (%))</td>
<td>1.5</td>
<td>0.17</td>
</tr>
<tr>
<td>(\delta g_{HWW} / g_{HWW} (%))</td>
<td>1.7</td>
<td>0.43</td>
</tr>
<tr>
<td>(\delta g_{Hbb} / g_{Hbb} (%))</td>
<td>3.7</td>
<td>0.61</td>
</tr>
<tr>
<td>(\delta g_{Hcc} / g_{Hcc} (%))</td>
<td>~70</td>
<td>1.21</td>
</tr>
<tr>
<td>(\delta g_{Hgg} / g_{Hgg} (%))</td>
<td>2.5 (gg->H)</td>
<td>1.01</td>
</tr>
<tr>
<td>(\delta g_{Htt} / g_{Htt} (%))</td>
<td>1.9</td>
<td>0.74</td>
</tr>
<tr>
<td>(\delta g_{Hμμ} / g_{Hμμ} (%))</td>
<td>4.3</td>
<td>9.0</td>
</tr>
<tr>
<td>(\delta g_{HYY} / g_{HYY} (%))</td>
<td>1.8</td>
<td>3.9</td>
</tr>
<tr>
<td>(\delta g_{Htt} / g_{Htt} (%))</td>
<td>3.4</td>
<td>–</td>
</tr>
<tr>
<td>(\delta g_{HZY} / g_{HZY} (%))</td>
<td>9.8</td>
<td>–</td>
</tr>
<tr>
<td>(\delta g_{HHH} / g_{HHH} (%))</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

\(\text{BR}_{\text{exo}} \) (95%CL) \(\text{BR}_{\text{inv}} < 2.5\% \) \(< 1\% \)
Higgs decays

- study sensitivity as a function of minimum $p_T(H)$ requirement in the $\gamma\gamma$, $ZZ(4l)$, $\mu\mu$ and $Z(2l)\gamma$ channels
- low $p_T(H)$: large statistics and high syst. unc.
- large $p_T(H)$: small statistics and small syst. unc.
- $O(1-2\%)$ precision on BR achievable up to very high p_T (means 0.5-1% on the couplings)

- measure ratios of BRs to cancel correlated sources of systematics:
 - luminosity
 - object efficiencies
 - production cross-section (theory)

- 1% lumi + theory uncertainty
- p_T dependent object efficiency:
 - $\delta\varepsilon(e/\gamma) = 0.5 (1)\%$ at $p_T \to \infty$
 - $\delta\varepsilon(\mu) = 0.25 (0.5)\%$ at $p_T \to \infty$
Higgs self-coupling

- Very small cross-section due to negative interference with box diagram
- HL-LHC projections: $\delta k_\lambda / k_\lambda \approx 50\%$
- Expect large improvement at FCC-hh:
 - $\sigma(100 \text{ TeV}) / \sigma(14 \text{ TeV}) \approx 40$ (and $\times 10$)
 - $\times 400$ in event yields and $\times 20$ in precision
- main channels studied (using MVA):
 - $b\bar{b}\gamma\gamma$ ($\delta k_\lambda / k_\lambda \sim 3-8\%$)
 - $b\bar{b}\tau\tau$ ($\delta k_\lambda / k_\lambda \sim 12\%$)
 - $b\bar{b}ZZ(4l)$ ($\delta k_\lambda / k_\lambda \sim 15\%$)
 - $b\bar{b}b\bar{b}$ ($\delta k_\lambda / k_\lambda \sim 22\%$)
Higgs self-coupling (combination)

\[\delta k_\lambda / k_\lambda \sim 3.0-5.5\% \text{ assuming SM couplings} \]

\[\delta k_\lambda / k_\lambda \sim 3.0-5.5\% \text{ assuming SM couplings} \]

only 3 ab\(^{-1}\), few years of running @100 TeV to reach 10% precision

assuming SM couplings
Summary Higgs measurements

<table>
<thead>
<tr>
<th></th>
<th>HL-LHC</th>
<th>FCC-ee</th>
<th>FCC-hh</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta \Gamma_H / \Gamma_H (%)$</td>
<td>SM</td>
<td>1.3</td>
<td>tbd</td>
</tr>
<tr>
<td>$\delta g_{Hzz} / g_{Hzz} (%)$</td>
<td>1.5</td>
<td>0.17</td>
<td>tbd</td>
</tr>
<tr>
<td>$\delta g_{Hww} / g_{Hww} (%)$</td>
<td>1.7</td>
<td>0.43</td>
<td>tbd</td>
</tr>
<tr>
<td>$\delta g_{Hbb} / g_{Hbb} (%)$</td>
<td>3.7</td>
<td>0.61</td>
<td>tbd</td>
</tr>
<tr>
<td>$\delta g_{Hcc} / g_{Hcc} (%)$</td>
<td>~70</td>
<td>1.21</td>
<td>tbd</td>
</tr>
<tr>
<td>$\delta g_{Hgg} / g_{Hgg} (%)$</td>
<td>2.5 (gg->H)</td>
<td>1.01</td>
<td>tbd</td>
</tr>
<tr>
<td>$\delta g_{Htt} / g_{Htt} (%)$</td>
<td>1.9</td>
<td>0.74</td>
<td>tbd</td>
</tr>
<tr>
<td>$\delta g_{H\mu\mu} / g_{H\mu\mu} (%)$</td>
<td>4.3</td>
<td>9.0</td>
<td>0.65 (*)</td>
</tr>
<tr>
<td>$\delta g_{H\gamma\gamma} / g_{H\gamma\gamma} (%)$</td>
<td>1.8</td>
<td>3.9</td>
<td>0.4 (*)</td>
</tr>
</tbody>
</table>
| $\delta g_{Htt} / g_{Htt} (\%)$ | 3.4 | – | 0.95 (**)
| $\delta g_{HZY} / g_{HZY} (\%)$ | 9.8 | – | 0.91 (*) |
| $\delta g_{HHH} / g_{HHH} (\%)$ | 50 | ~30 (indirect) | 5 |
| BR_{exo} (95%CL) | BR_{inv} < 2.5% | < 1% | BR_{inv} < 0.025% |

* From BR ratios wrt $B(H\to4l)$ @ FCC-ee

** From $pp\to ttH / pp\to ttZ$, using $B(H\to bb)$ and ttZ EW coupling @ FCC-ee
Higgs Self-coupling and constraints on models with 1st order EWPT

- Strong 1st order EWPT (and CP violation) needed to explain large observed baryon asymmetry in our universe
- Can be achieved with extension of SM + singlet

Direct detection of extra Higgs states

Combined constraints from precision Higgs measurements at FCC-ee and FCC-hh

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.
W_L W_L \rightarrow \text{HH}

\begin{align*}
A(V_L V_L \rightarrow \text{HH}) & \sim \frac{\hat{s}}{v^2} (c_{2V} - c_V^2) + \mathcal{O}(m_W^2/\hat{s}), \\
& \text{high energy behaviour driven by } C_{2V} \text{ and } C_V, \text{ if } \delta C_{2V} \neq 0, \text{ grows with } E
\end{align*}

0 \text{ in the SM}

\begin{itemize}
 \item \text{negligible at large } m_{HH}
\end{itemize}

With \(c_V \) from FCC-ee, \(\delta c_{2V} < 1\% \)
H→invisible

- Measure it from H + X at large p_T(H)
- Fit the E_T^{miss} spectrum
- Constrain background p_T spectrum from Z→νν to the % level using NNLO QCD/EW to relate to measured Z, W and γ spectra (low stat)
- Estimate Z→νν from Z→ee/μμ control regions (high stat).

\[\text{BR}(H\rightarrow\text{inv}) \lesssim 2.5 \times 10^{-4} \]

![Graph showing the branching ratio (BR) of H→invisible as a function of luminosity. The graph includes different models such as default, default no exp. sys, 1% unc., and 1% unc no exp sys. The graph is labeled with FCC-ee and H→ZZ→νννv.]

![Graph showing the DM-nucleon cross section as a function of DM mass. The graph includes a realistic bound with 30 ab^{-1}(100 TeV) and B(H→inv.) < 0.0002. The graph also shows various DM models such as Fermion DM, Neutrino Floor, and Neutrino Floor.]

Phil Harris
Direct searches: Heavy Resonances

- Mass reach should increase by a factor ~ 7 from LHC to FCC-hh
- Direct “simple” sensitivity allow to assess collider potential, and help designing detector …

“Flavour anomalies” inspired model

The FCC-hh can exclude all the allowed parameter space
Direct searches: SUSY

- stop $m = 10$ TeV
- gluino $m = 15$ TeV

Hadronic stop search

Boosted top tagger

FCC Simulation

Discovery potential (5σ)

~1.4 TeV

HL-LHC
Disappearing tracks

- Simplest WIMP DM that annihilate with EW force
- Higgsino (1 TeV), Wino (3 TeV) DM
- $\Delta m(\chi^\pm, \text{LSP}) \sim 160 \text{ MeV}/350 \text{ MeV}$
 - hardly detectable soft pion
 - leads to characteristic “disappearing track” signature

FCC-hh can discover Higgsino and Wino dark matter
Conclusions & outlook

- **Large statistics** (10^{10} Higgs bosons) open up a whole new range of possibilities, allowing for precision in new kinematic regimes, and rare decay channels → complementary to FCC-ee

- Measuring **ratios of couplings** (or equivalently BRs), allows to cancel systematics (1% precision on “rare” couplings within reach after absolute HZZ measurement in e+e-)

- Higgs-self coupling can be measured with $\delta \kappa(\text{stat}) \approx 5\%$ precision at FCC-hh (best achievable precision among all future facilities)

- Can directly and indirectly exclude compelling classes of models compatible with 1st order electro-weak phase transition

- Unprecedented reach for direct searches, heavy resonances, SUSY, Dark Matter searches
Backup
The FCC-hh detector

Barrel ECAL: LAr/Pb
\(\sigma_E/E \sim 10\%/\sqrt{E} \oplus 0.7\%\)
30 \(X_0\)
lat. segm: \(\Delta\eta\Delta\phi \approx 0.01\)
long. segm: 8 layers

Tracker: \(\sigma_{pT}/p_T \sim 20\%\)
at 10 TeV (1.5 m radius)

Central Magnet + Fwd solenoids

Fwd ECAL: LAr/Cu
\(\sigma_E/E \sim 30\%/\sqrt{E} \oplus 1\%\)
lat. segm: \(\Delta\eta\Delta\phi \approx 0.01\)
long. segm: 6 layers

Fwd HCAL: LAr/Cu
\(\sigma_E/E \sim 100\%/\sqrt{E} \oplus 10\%\)
lat. segm: \(\Delta\eta\Delta\phi \approx 0.05\)
long. segm: 6 layers

Barrel HCAL: Sci/Pb/Fe
\(\sigma_E/E \sim 50-60\%/\sqrt{E} \oplus 3\%\)
11 \(\lambda\) (ECAL+HCAL)
lat. segm: \(\Delta\eta\Delta\phi \approx 0.025\)
long. segm: 10 layers
Machine and detector requirements

lumi & pile-up

<table>
<thead>
<tr>
<th>parameter</th>
<th>unit</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>HE-LHC</th>
<th>FCC-hh</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{cm}</td>
<td>TeV</td>
<td>14</td>
<td>14</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>circumference</td>
<td>km</td>
<td>26.7</td>
<td>26.7</td>
<td>26.7</td>
<td>97.8</td>
</tr>
<tr>
<td>peak $\mathcal{L} \times 10^{34}$</td>
<td>cm$^{-2}$s$^{-1}$</td>
<td>1</td>
<td>5</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>bunch spacing</td>
<td>ns</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>number of bunches</td>
<td></td>
<td>2808</td>
<td>2808</td>
<td>2808</td>
<td>10600</td>
</tr>
<tr>
<td>goal $\int \mathcal{L}$</td>
<td>ab$^{-1}$</td>
<td>0.3</td>
<td>3</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>σ_{inel}</td>
<td>mbarn</td>
<td>85</td>
<td>85</td>
<td>91</td>
<td>108</td>
</tr>
<tr>
<td>σ_{tot}</td>
<td>mbarn</td>
<td>111</td>
<td>111</td>
<td>126</td>
<td>153</td>
</tr>
<tr>
<td>BC rate</td>
<td>MHz</td>
<td>31.6</td>
<td>31.6</td>
<td>31.6</td>
<td>32.5</td>
</tr>
<tr>
<td>peak pp collision rate</td>
<td>GHz</td>
<td>0.85</td>
<td>4.25</td>
<td>22.8</td>
<td>32.4</td>
</tr>
<tr>
<td>peak av. PU events/BC</td>
<td></td>
<td>27</td>
<td>135</td>
<td>721</td>
<td>997</td>
</tr>
<tr>
<td>rms luminous region σ_z</td>
<td>mm</td>
<td>45</td>
<td>57</td>
<td>57</td>
<td>49</td>
</tr>
<tr>
<td>line PU density</td>
<td>mm$^{-1}$</td>
<td>0.2</td>
<td>0.9</td>
<td>5</td>
<td>8.1</td>
</tr>
<tr>
<td>time PU density</td>
<td>ps$^{-1}$</td>
<td>0.1</td>
<td>0.28</td>
<td>1.51</td>
<td>2.43</td>
</tr>
<tr>
<td>$dN_{ch}/d\eta</td>
<td>_{\eta=0}$</td>
<td></td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>charged tracks per collision N_{ch}</td>
<td>GHz</td>
<td>95</td>
<td>95</td>
<td>108</td>
<td>130</td>
</tr>
<tr>
<td>Rate of charged tracks</td>
<td>GeV/c</td>
<td>76</td>
<td>380</td>
<td>2500</td>
<td>4160</td>
</tr>
<tr>
<td>$<p_T>$</td>
<td>10^{16}</td>
<td>2.6</td>
<td>26</td>
<td>91</td>
<td>324</td>
</tr>
<tr>
<td>Number of pp collisions</td>
<td></td>
<td>0.1</td>
<td>0.7</td>
<td>2.7</td>
<td>8.4 (12)</td>
</tr>
<tr>
<td>Charged part. flux at 2.5 cm est.(FLUKA)</td>
<td>GHz cm$^{-2}$</td>
<td>0.4</td>
<td>3.9</td>
<td>16.8</td>
<td>84.3 (60)</td>
</tr>
<tr>
<td>1 MeV-neq fluence at 2.5 cm est.(FLUKA)</td>
<td>10^{16} cm$^{-2}$</td>
<td>1.3</td>
<td>13</td>
<td>54</td>
<td>270 (400)</td>
</tr>
<tr>
<td>Total ionising dose at 2.5 cm est.(FLUKA)</td>
<td>MGY</td>
<td>316</td>
<td>316</td>
<td>427</td>
<td>765</td>
</tr>
<tr>
<td>$E/d\eta</td>
<td>_{\eta=5}$</td>
<td>GeV</td>
<td>316</td>
<td>316</td>
<td>427</td>
</tr>
<tr>
<td>$P/d\eta</td>
<td>_{\eta=5}$</td>
<td>kW</td>
<td>0.04</td>
<td>0.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

High granularity and precision timing needed to reduce occupancy levels and for pile-up rejection
Detector requirements from high p_T searches

- Change in paradigm: heavy flavour tagging
- Multi-TeV b-Hadrons decay outside the pixel volume
- Need to adapt identification algorithms for maintaining sensitivity in high mass searches.

Only 71% of 5 TeV b-hadrons decay in the 5th layer.
- Displaced vertices

To be verified in high pile-up environment.

arXiv:1701:06832
Precision vs. sensitivity

- **Higher statistics shifts the balance between systematic and statistical uncertainties.** It can be exploited to define different signal regions, with better S/B, better systematics, lower impact of pile-up, pushing the potential for better measurements beyond the “systematics wall” of low-stat measurements.

- We often talk about “**precise**” Higgs measurements. What we actually aim at is “**sensitive**” tests of the Higgs properties, where sensitive refers to the ability to reveal BSM behaviours.

- **Sensitivity** may not require extreme precision. Going after “sensitivity”, rather than just precision, opens itself new opportunities.

- For example, in the context of dim. 6 operators in EFT, some operators grow with energy:

 \[\delta O \sim \left(\frac{v}{\Lambda} \right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda} \right)^2 \]

 \[\Rightarrow \text{precision probes large } \Lambda \]

 e.g. \(\delta O=1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV} \)

 \[\Rightarrow \text{kinematic reach probes large } \Lambda \]

 e.g. \(\delta O=15\% \text{ at } Q=1 \text{ TeV } \Rightarrow \Lambda \sim 2.5 \text{ TeV} \)
Higgs at large p_T

- Huge rates at large p_T:
 - $> 10^6$ Higgs produced with $p_T > 1$ TeV
 - Higher probability to produce large p_T Higgs from ttH/VBF/VH at large
 - Even rare decay modes can be accessed at large p_T

- Opportunity to measure the Higgs in a new dynamical regime

- Higgs p_T spectrum highly sensitive to new physics.
Single Higgs production @FCC-hh

<table>
<thead>
<tr>
<th></th>
<th>σ (13 TeV)</th>
<th>σ (100 TeV)</th>
<th>σ (100)/σ (13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggH (N3LO)</td>
<td>49 pb</td>
<td>803 pb</td>
<td>16</td>
</tr>
<tr>
<td>VBF (N2LO)</td>
<td>3.8 pb</td>
<td>69 pb</td>
<td>16</td>
</tr>
<tr>
<td>VH (N2LO)</td>
<td>2.3 pb</td>
<td>27 pb</td>
<td>11</td>
</tr>
<tr>
<td>ttH (N2LO)</td>
<td>0.5 pb</td>
<td>34 pb</td>
<td>55</td>
</tr>
</tbody>
</table>

Large statistics in various Higgs decay modes allow:

- for % - level precision in statistically limited rare channels ($\mu\mu$, $Z\gamma$)
- in systematics limited channel, to isolate cleaner samples in regions (e.g. @large Higgs p_T) with:
 - higher S/B
 - smaller (relative) impact of systematic uncertainties
Higgs decays: $\gamma\gamma$ - ZZ - $Z\gamma$ - $\mu\mu$

- 1% systematics on (production x luminosity), meant as a reference target. Assumes good theoretical progress over the next years, and reduction of PDF+α_S uncertainties with HL-LHC + FCC-ee.

- e/μ/γ efficiency systematics (shown on the right). In situ calibration, with the immense available statistics in possibly new clean channels ($Z\to\mu\mu\gamma$), will most likely reduce the uncertainties.

- All final states considered here rely on reconstruction of m_H to within few GeV. Backgrounds (physics and instrumental) to be determined with great precision from sidebands (~infinite statistics)

 - Impact of pile-up: hard to estimate with today’s analyses. Focus on high-p_T objects will help to decrease relative impact of pile-up

 - Following scenarios are considered:
 - δ_{stat} → stat. only (I) (signal + bkg)
 - $\delta_{\text{stat}}, \delta_{\text{eff}}$ → stat. + syst. (II)
 - $\delta_{\text{stat}}, \delta_{\text{eff}}, \delta_{\text{prod}} = 1\%$ → stat. + syst. + prod (III)

- e/μ/γ efficiency systematics (shown on the right). In situ calibration, with the immense available statistics in possibly new clean channels ($Z\to\mu\mu\gamma$), will most likely reduce the uncertainties.
Top Yukawa (production)

- production ratio $\sigma(ttH)/\sigma(ttZ) \approx y_t^2 y_b^2/ g_{ttZ}^2$
- measure $\sigma(ttH)/\sigma(ttZ)$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the semi-leptonic channel
- perform simultaneous fit of double Z and H peak
- (lumi, scales, pdfs, efficiency) uncertainties cancel out in ratio
- assuming g_{ttZ} and κ_b known to 1% (from FCC-ee),

\rightarrow measure y_t to 1%
Standalone 100 TeV Higgs measurements

- Following the principle of **reducing** as much as possible the impact of systematics assumptions on future measurements, additional **ratio measurements**:

\[
\frac{\sigma(WH[\rightarrow \gamma\gamma])}{\sigma(WZ[\rightarrow e^+e^-])} \quad \frac{\sigma(WH[\rightarrow \tau\tau])}{\sigma(WZ[\rightarrow \tau\tau])} \quad \frac{\sigma(WH[\rightarrow bb])}{\sigma(WZ[\rightarrow bb])}
\]

\[
G_W = g^2_{HWW} \times BR(H \rightarrow \gamma\gamma) \quad G_\tau = g^2_{HWW} \times BR(H \rightarrow \tau\tau) \quad G_b = g^2_{HWW} \times BR(H \rightarrow bb)
\]

\[
\delta G/G < 1\%
\]

also: \(\sigma(Z[\nu\nu]H[\rightarrow \gamma\gamma]) / \sigma(Z[\nu\nu]Z[\rightarrow e^+e^-])\)
Vector Boson Scattering

- Sets constraints on detector acceptance (fwd jets at $\eta \approx 4$)
- Study $W^+/W^- (\text{same-sign})$ channel
- Large WZ background at FCC-hh
- 3-4% precision on W_LW_L scattering xsec. achievable with full dataset (only 3σ HL-LHC)
- Indirect measurement of HWW coupling possible, $\delta\kappa_W/\kappa_W \approx 2\%$

Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the di-lepton pair invariant mass in the $W_LW_L \rightarrow HH$ process.

<table>
<thead>
<tr>
<th>$m_{l^+l^+}$ cut</th>
<th>> 50 GeV</th>
<th>> 200 GeV</th>
<th>> 500 GeV</th>
<th>> 1000 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\kappa_W \in$</td>
<td>[0.98,1.05]</td>
<td>[0.99,1.04]</td>
<td>[0.99,1.03]</td>
<td>[0.98,1.02]</td>
</tr>
</tbody>
</table>
Strong 1st order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking.

Strong 1st order phase transition \Rightarrow \langle \Phi_C \rangle > T_C

In the SM this requires $m_H \lesssim 80$ GeV, else transition is a smooth crossover.

Since $m_H = 125$ GeV, new physics, coupling to the Higgs and effective at scales $\mathcal{O}(\text{TeV})$, must modify the Higgs potential to make this possible.

- Probe higher-order terms of the Higgs potential (selfcouplings)
- Probe the existence of other particles coupled to the Higgs
MSSM Higgs

N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang,
arXiv:1605.08744

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu,
arXiv:1504.07617
Heavy resonances (summary)