

LHCf program for Run III

Alessio Tiberio INFN, section of Florence, Italy on behalf of the LHCf collaboration LHCP 2020 - May 25-30, 2020

Outline

The LHCf experiment

- Physics motivations
- Experimental setup

Program for LHC Run III

- P p-p run @ √s = 14 TeV
- P p-O run @ √s = 9.9 TeV
- Detector upgrade

Physics motivations

Cosmic rays spectrum

- Direct measurements limited by low flux of particles at high energies
 - Only indirect
 measurements
 (with ground based experiments) are possible above
 ~10¹⁴ eV

Contribution from accelerators

Why forward?

Maximum multiplicity in the central region

Peak of energy flow around $\eta \sim 9 \ (\theta \sim 0.25 \ mrad)$

Experimental setup

Experimental setup

Detectors performance

- Two sampling and position sensitive calorimeters
- Tungsten + GSO scintillators
- Depth: 44 X_0 , 1.6 λ
- Energy resolution:
 - < 3% (photons, E > 200 GeV)
 - ~ 40% (neutrons)

40mm 20mm

Arm 1

44 radiation lengths

Arm 1

- Transverse size: 20 x 20 mm² and 40 x 40 mm²
- 4 x-y GSO bars layers
- Position resolution: 100 μm (photons, E > 200 GeV)

Arm 2

- Transverse size: 25 x 25 mm²
 and 32 x 32 mm²
- 4 x-y silicon µstrip layers
- Position resolution: 40 μm (photons, E > 200 GeV)

Run III: p-p @ 14 TeV

Motivations for p-p run @ 14 TeV

- Extend the energy coverage to $E_{CR} = 10^{17}$ eV (however, no dramatical changes in CR physics are expected)
- Increase of statistics: the upgrade of Arm2 readout electronics and the adoption of a new trigger scheme will give the capability to run at an higher luminosity (L $\sim 10^{30}$ cm⁻² s⁻¹, 10 times larger than luminosity of 13 TeV run)
 - ► Reduce statistic uncertainty of π⁰ spectra
 - Allow the analysis of η and K⁰ mesons spectra

p-p @ 14 TeV: π° spectrum

- The increase of statistics will reduce the statistic uncertainty and will extend the coverage in P_T and X_F
- The precision is sufficient to discriminate between different hadronic interaction models

p-p @ 14 TeV: η and K^o spectra

- η meson (η→2γ, BR=39.4%)
 - reconstructed from one photon in each calorimeter
 - expected \sim 5000 event with $L_{int} \sim$ 20 nb⁻¹
- K° meson ($K_s^0 \rightarrow 2\pi^0 \rightarrow 4\gamma$, BR=30.7%)
 - 4 photons hitting the calorimeters
 - expected few hundreds of events with $L_{int} \sim 20 \text{ nb}^{-1}$

p-p @ 14 TeV: LHCf-ATLAS

Combined operation with ATLAS

- successfully performed during 13 TeV operation
- using central particle production information from ATLAS, a sample of low-mass diffractive events (M_{\times} < 50 GeV) can be selected

Combined operations with ALFA roman pots (under discussion)

- identification of single diffractive events, measurements of Δ resonance (p+p→ p+Δ→ p+p+π⁰) and bremsstrahlung (p+p→ p+p+γ) events

Combined operations with ZDC (under discussion)

improve neutron energy resolution from 35-40% to 20%

p-p @ 14 TeV: beam requirements

Proposed beam parameters

- colliding bunches: ~500
- minimum bunch spacing: 200 ns
- luminosity: $< 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$
- pile-up (μ): 0.014
- beam crossing: vertical, downward (best: 290 μrad)
- β*: ~10 m

Operation time

- with optimal conditions, <u>1-2 days</u> (beam setup + data taking) are enough to achieve our minimum physics program ($L_{int} \sim 20 \text{ nb}^{-1}$)

Run III: p-O @ 9.9 TeV

Motivations for p-O run @ 9.9 TeV

- Best configuration to test CR-atmosphere interaction
 - operation on p-remnant side
- Reduced Ultra Peripheral Collisions (UPC) contribution with respect to p-Pb collisions
 - LHCf detectors can not discriminate UPC events from QCD ones
 - UPC contribution is estimated with MC simulations and subtracted from data
 - Large systematic uncertainty associated to UPC MC simulations:
 - virtual photon flux (~10%)
 - proton-photon interaction (up to 20%)

p-O @ 9.9 TeV: UPC contribution

- p-Pb: the UPC contribution is of the same order (or greater) of QCD one
- p-O: the UPC contribution is 1-2 order of magnitude smaller than QCD one → negligible systematic error associated to UPC subtraction

p-O @ 9.9 TeV: O-remnant side

- Too much multiplicity leaving the detector in the nominal position on the beam centre
- The detector must be shifted 15 mm upward to perform the measurements
- Similar setup in case of O-O collisions

Number of hits

photons, small tower

ion-remnant side

p-O @ 9.9 TeV: beam requirements

Proposed beam parameters

- colliding bunches: 43
- minimum bunch spacing: 2 μs
- luminosity: $< 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$
- pile-up (μ): < 0.01
- beam crossing: vertical, downward (best: 290 μrad)
- β*: ~10 m

Operation time

- with optimal conditions, 2 days (beam setup + data taking) are enough to achieve our minimum physics program ($L_{int} \sim 0.7 \text{ nb}^{-1}$)

Detector upgrade

Trigger logic

"Shower" trigger

- prescale factor: 14
- \sim 100% efficiency for photons (E > 200 GeV)
- $\sim 70\%$ efficiency for neutrons (E > 1 TeV)

"Type I" trigger

- prescale factor: 1
- π^0 with one photon in each calorimeter (efficiency ~98%)
- **n**

"High EM" trigger

- prescale factor: 1
- high energy photons (E > 1 TeV)
- π^0 with both photons in the same calorimeter (efficiency ~97%)

Arm2 DAQ upgrade

Replace aged electronics

 lack of replacements for FOXI optical transmitters/receivers, control ring boards, ...

Speed-up the readout by a factor ~10

- Arm2 silion DAQ gives the main contribution to dead time (~1 ms)
- GbEthernet (~1 Gbps) protocol will be used instead of FOXIchip protocol (~100 Mbps)

Summary

- LHCf will operate during Run III of LHC
- p-p run @ 14 TeV (2021)
 - increase of statistics (π^0)
 - η, K⁰
- p-O run @ 9.9 TeV (2023?)
 - ideal condition for cosmic rays study
 - suppression of UPC contribution with respect to p-Pb collisions
- The technical proposal of LHCf has already been approved by LHCC Research Board
- The upgrade of Arm2 DAQ electronics is ongoing

Thank you for your attention!

if you have more questions:

https://cern.zoom.us/j/5653173681?pwd=RUxEOEsreXE1VVNoVWkxM0FTOHZpZz09