S. Leontsinis University of Zurich

On behalf of the ATLAS and CMS Collaborations

Large Hadron Collider Physics Conference 29th May 2020

Quarkonia production in ATLAS and CMS experiments Introduction

- •Heavy flavour production is very important for the understanding of QCD
- •LHC's remarkable performance provided **ATLAS and CMS** with over **150 fb**⁻¹ of data during Run1 and Run2
 - •using these large datasets **new processes** can be observed and more **precise measurements** can be made
- In this talk just a selection of topics
 - (1) Measurement of the production cross-section of J/ ψ and ψ (2S) mesons at high transverse momentum in pp collisions at $\sqrt{s}=13$ TeV with the **ATLAS** detector ATLAS-CONF-2019-047
 - (2) Measurement of the χ_{c1} and χ_{c2} polarisations in proton-proton collisions at $\sqrt{s=8}$ TeV (CMS) arXiv:1912.07706
 - (3) Measurement of J/ ψ production in association with a W[±] boson with pp data at 8 TeV (ATLAS) arXiv:1909.13626
 - (4) Relative cross sections of the $B_c^+(2S)$ and $B_c^{*+}(2S)$ states with respect to the B_c^+ state in proton-proton collisions at \sqrt{s} =13 TeV _{CMS-PAS-BPH-19-001}

Measurement of the production cross-section of J/ ψ and ψ (2S) mesons at high transverse momentum in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector

ATLAS-CONF-2019-047

Measurement of the production cross-section of J/ ψ and $\psi(2S)$ mesons

- •Quarkonia production provides a unique insight into QCD
 - produced either prompt or non-prompt
- •Experimental data can be used to extract values of the Long-Distance Matrix Elements (LDMEs) to help the predictions of quarkonia cross-sections
- •Although there are a lot of measurements, a universal library of LDMEs is still challenging to describe simultaneously the
 - •quarkonia **polarisations**
 - •quarkonia production in association with other particles
 - photo or electro quarkonia production

•So, it is important to **widen** the scope of **results** both in terms of **quarkonia production mode** and **kinematic reach**

Fit Projection Prompt $\psi(nS)$

Prompt Bkg

Non-prompt $\psi(nS)$

τ(μμ) [ps]

Non-Prompt Bkg

Measurement of the production cross-section of J/ψ and $\psi(2S)$ mesons

•Use of single muon triggers and full Run-2 dataset allows to probe high-pt range

• previous analysis employed di-muon triggers, limiting the p_T range up to 100 GeV Eur. Phys. J. C 76 (2016) 283

> 50 < |y| < 2.00100.0 < p_ < 120.0 GeV

2500

2000

1500

1000

Events

🔶 Data

Fit Projection

Prompt w(nS)

Prompt Bkg

-- Non-prompt w(nS)

Non-Prompt Bkg

104

10³

10²

•Fit both di-muon invariant mass and pseudo-proper decay time to separate 000 - ATLAS Preliminary ATLAS Preliminary prompt and non-prompt components 0.75 < |y| < 1.50 140.0 < p₁ < 160.0 GeV pp vs = 13 TeV. 139 fb $p_{DD} \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

 Measurement dominated by statistical uncertainty at high p_T

• At low p_T muon reconstruction and trigger contributed to the systematic uncertainty

Measurement of the production cross-section of J/ ψ and $\psi(2S)$ mesons

- •Comparison of prompt J/ ψ cross-section with CMS $_{Phys.\ Lett.\ B\ 780\ (2018)\ 251}$
 - consistent results in overlap region
 - •parameterisation (b + p_T)⁻ⁿ seems to be consistent with measurement
- •Comparison of non-prompt production of quarkonia with FONLL
 - •good agreement at low p_T
 - •FONLL predicts higher cross-sections at high-p_T

Measurement of the χ_{c1} and χ_{c2} polarisations in proton-proton collisions at $\sqrt{s}{=}8$ TeV

Phys. Rev. Lett. 124 (2020) 162002 - arXiv:<u>1912.07706</u>

Measurement of the χ_{c1} and χ_{c2} polarisations

•J/ ψ , ψ (2S), Y(1S), Y(2S) and Y(3S) differential cross-sections measured in ATLAS and CMS have indistinguishable shapes as a function of p_T/M

•which is followed by the χ_{c1} and χ_{c2} states

• For polarisations, five S-wave states compatible with unpolarised scenario

• do the χ_{c1} and χ_{c2} states follow?

•In NRQCD, χ_{c1} and χ_{c2} polarisations are determined by a single colour octet (CO) parameter

•can be extracted employing χ_{c2}/χ_{c1} cross-section ratio

 The polarisation of the two states should be opposite and almost maximal

•in case they are similar, will pose a challenge to NRQCD

Measurement of the χ_{c1} and χ_{c2} polarisations

- •First measurement of the polarisations of inclusively produced P-wave quarkonia using the 8 TeV dataset
- •The χ_{c1} and χ_{c2} states are reconstructed via their radiative decays to J/ $\psi\gamma$

9

- •di-muon trigger
- photon being converted in the tracker
- •Polarisation of χ_{cJ} equivalent to the polarisation of its daughter J/ ψ
- •3 bins in J/ ψ p_T: 8-12, 12-18 and 18-30 GeV
- Angular decay parametrised as

 $1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi$

Measurement of the χ_{c1} and χ_{c2} polarisations

- solid and dashed curves indicate the NRQCD and unpolarised scenarios
- $\bullet\lambda_{\theta}$ for χ_{c2} according to the unpolarised and NRQCD scenarios
 - •good agreement with the NQCD while the unpolarised scenario is strongly disfavoured

First significant indication of kinematic differences between the various quarkonia states

Measurement of J/ ψ production in association with a W+ boson with pp data at 8 TeV

JHEP 01 (2020) 095 - arXiv:1909.13626

Measurement of J/ ψ production in association with a W[±] boson

- •J/ ψ production in association with a W boson could be used to study Colour Singlet and Colour Octet contributions
 - •W boson requirement in final state selects dedicated CS/CO diagrams
- •Two contributions in the final state, where the J/ ψ meson and the W boson are potentially produced via either
 - Single Parton Scattering (SPS)
 - Double Parton Scattering (DPS)
 - indistinguishable on an event-by-event basis

- •use of discriminating variables azimuthal angle between the two particles
 - •flat contribution from DPS peak at $\Delta \phi = \pi$ from SPS
- •DPS governed by "universal" effective cross-section σ_{eff}

Measurement of J/ψ production in association with a W[±] boson

•Measurement of
$$R_{{
m J}/\psi}=\sigma_{{
m W}+{
m J}/\psi}/\sigma_{
m W}$$
 using the 8 TeV dataset

• Single high-p⊤ trigger

•Fit both di-muon invariant mass and pseudo-proper decay time to separate

Events / 0.025

80

40

20

eg 100 Vs=8 TeV, 20.3 fb⁻¹

ATLAS

|y_{1/m}|<1

60 -8.5 < p₊^{J/ψ} < 150 GeV

2.6

2.8

3

Data

3.2

3.4

Total

Prompt J/w

prompt and non-prompt components Double parton scattering component estimation

• probability that a J/ψ meson is a produced by a second hard process

$$\bullet P_{\rm W+J/\psi} = \sigma_{\rm J/\psi}/\sigma_{\rm eff}$$

•exact value of $\sigma_{
m eff}$ is unknown

• $\sigma_{\text{eff}} = 15 \pm 3 \text{ (stat.)} {}^{+3}_{-3} \text{ (sys.)} \text{ mb from W+2 jet events}$

•
$$\sigma_{\text{eff}} = 6.3 \pm 1.6 \text{ (stat.)} \pm 1.0 \text{ (sys.)} \text{ mb from}$$

prompt J/ Ψ pair production

•both values consistent at low $\Delta \phi$

Measurement of J/ ψ production in association with a W^ boson

 \bullet Systematic uncertainty dominated by the vertex separation between the J/ ψ meson and the W boson

•Fiducial, inclusive (corrected for the J/ ψ spin-alignment) and DPS-subtracted measurements

•DPS-subtracted measured ratio give the opportunity to be compared with theoretical predictions (CO only) - which is found to be in agreement

 \bullet lower σ_{eff} brings the calculated cross-ratio in agreement with measurement

•neither σ_{eff} makes the calculations agree with the J/ ψ p_T spectrum

• probably due to the lack of CS contributions

S. Leontsinis

Relative cross sections of the $B_c^+(2S)$ and $B_c^{*+}(2S)$ states with respect to the B_c^+ state in proton-proton collisions at \surd states TeV

<u>CMS-PAS-BPH-19-001</u>

Relative cross sections of the $B_c^+(2S)$ and $B_c^{*+}(2S)$ states with respect to the B_c^+

- Although the charmonia and bottomonia spectra is well explored
 - $\bullet B_c^+ \, \text{meson}$ knowledge is limited
 - different heavy quark flavours allow only transitions through photons or pion pairs
- \bullet First discovery of the B_c^+ meson in 1998 by CDF $_{\underline{\sf PRL}\ 81\ (1998)\ 2432}$
 - lowest in mass bound state, of the bc family of mesons
- •ATLAS observed the $B_c^+(2S)$ state $_{\mbox{\scriptsize PRL 113 (2014) 212004}}$
- •CMS observed the $B_c^{*+}(2S)$ state <u>PRL 122 (2019) 132001</u> 25
 - •decaying to $B_c^{*+}\pi^+\pi^- \to B_c^+\gamma\pi^+\pi^-$ where the soft photon is not detected
 - •same final state as $B_c^+(2S) \rightarrow B_c^+\pi^+\pi^-$

Particle	Predicted Mass [MeV]			
Bc	6247 - 6286			
Bc*	6308 - 6341			
B _c (2S)	6835 - 6882			
Bc*(2S)	6881 - 6914			

Relative cross sections of the ${
m B}^+_c(2S)$ and ${
m B}^{*+}_c(2S)$ states with respect to the ${
m B}^+_c$

- •Measurement of cross section ratios using the 13 TeV dataset
 - •di-muon trigger
 - $\bullet B_c^+$ reconstructed through its J/ $\psi\pi^{\scriptscriptstyle +}$ decay mode

•
$$R^+ \equiv \frac{\sigma(B_c^+(2S))}{\sigma(B_c^+)} = 3.57 \pm 0.69 \text{ (stat)} \pm 0.32 \text{ (syst)}\%$$

•
$$R^{*+} \equiv \frac{\sigma(B_c^{*+}(2S))}{\sigma(B_c^{+})} = 4.91 \pm 0.69 \text{ (stat)} \pm 0.57 \text{ (syst)}\%$$

•
$$R^{*+} / R^{+} \equiv \frac{\sigma(B_c^{*+}(2S))}{\sigma(B_c^{+}(2S))} = 1.39 \pm 0.35 \text{ (stat)} \pm 0.09 \text{ (syst)}$$

 \bullet no significant variation with the p_T or $|\mathsf{y}|$ of the B_c^+ meson is observed

Summary

•Using Run1 and Run2 datasets **ATLAS** and **CMS** Collaborations increase the number of measurements and contribute towards the understanding of the **quarkonia production**

- increasing the precision and
- •increasing the kinematic reach of past measurements
- probing rarer processes

•Many interesting results not covered here are presented in other flavour physics talks

- •Only a fraction of available data analysed so far...
 - •road ahead includes the exploration of the **available data** from the collaborations including the **parked CMS data**
 - •... and the preparations for the **restart and Run3**!!

Stay tuned!

ATLAS results

CMS results

backup

Measurement of J/ψ production in association with a W[±] boson

Systematics

Source of Uncertainty	Uncertainty [%]		
	$ y_{J/\psi} < 1$	$1 < y_{J/\psi} < 2.1$	
J/ψ mass fit	8.7	4.9	
Vertex separation	12	15	
$\mu_{J/\psi}$ efficiency	2.0	1.6	
Pile-up	1.1	1.4	
$J/\psi + Z$ and $J/\psi + W^{\pm}(\rightarrow \tau^{\pm}\nu)$	3.5	4.8	
Efficiency correction	2.3	2.3	

Relative cross sections of the $B_c^+(2S)$ and $B_c^{*+}(2S)$ states with respect to the B_c^+

Systematics

	R^+	R^{*+}	R^{*+}/R^{+}
J/ $\psi \pi^+$ fit model		4.4	_
$ m B_c^+\pi^+\pi^-$ fit model	5.9	2.9	2.9
Efficiencies: statistical uncertainty		1.0	1.4
Efficiencies: dispersion among years		1.6	0.9
Efficiencies: dipion tracking	4.2	4.2	_
Decay kinematics		6.9	4.2
Helicity angle		6.0	3.5
Total systematic uncertainty		11.5	6.4