

Recent *t*tH measurements with ATLAS

Merve Nazlim Agaras (LPC) on behalf of the ATLAS Collaboration

8th Edition of the Large Hadron Collider Physics Conference LHCP

29.5.2020

Top Yukawa Coupling

* Goal of the *t*t H measurement: Probing the top-Yukawa coupling y_t (directly)

▶ Largest in the SM:
$$y_t = \sqrt{2}m_t/\nu \approx 1$$

- Relevant to: Effective potential of Higgs field, Higgs-self coupling, destabilises the vacuum, the required energy scale for new physics ...
- What is the CP nature of the Higgs-top interaction?

Recent *ttH* **measurements with ATLAS** | *LHCP*, 29 May 2020 | *M*.Nazlim Agaras

from ggF Higgs production

 $\overline{m}_{a}(m_{H})$ used for quarks

10

 10^{2}

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 24.5 - 139 \text{ fb}^{-1}$

SM Higgs boson

 $m_{\mu} = 125.09 \text{ GeV}$

 $k_F \frac{m_F}{\sqrt{2}}$ or $\sqrt{k_V \frac{m_V}{\sqrt{2}}}$

10-

10⁻²

10⁻³

 10^{-4}

1.2

0.8

 10^{-1}

 κ_{F} or $\sqrt{\kappa_{V}}$

*tīH***Production at ATLAS**

Top Pair Branching Fraction	$\sigma_{t\bar{t}H} \approx 0.5 pb$ s" 46% g $f = 15\%$ g g $f = 15\%$ $f = 15\%$	Solution Solut	скогороннун скогоронну скогоронну скогороннонноннонноннонноннонноннонноннонно	
Search channel (Higgs decay)	Benefits/challenges	Latest publications	Luminosity (fb ⁻¹)	
$H \rightarrow b\bar{b}$	Wide Higgs peak, high rate/ difficult backgrounds	<u>Phys. Rev. D 97 (2018) 072016</u>	36	
$H \rightarrow WW^*, ZZ^*, \tau\tau$ (multilepton)	Reasonable rate/no full reconstruction of Higgs/non- prompt backgrounds	ATLAS-CONF-2019-045	80	
$\begin{array}{c} H \to ZZ^* \to 4\ell \\ H \to \gamma\gamma \end{array}$	Very clean/small rate	arXiv:2004.03447 ATLAS-CONF-2019-004	139	
Combination	<u>Phys. Lett. B 784 (</u>	80+36		

- * Most common decay mode, but challenging final states
 - Combinatorics from many bjets.
 - CRs to constrain various backgrounds and systematic uncertainties

* Analysis regions

- Iepton+jets, dileptonic channels
- Resolved & boosted (for lepton+jets)
- split NJets, btagging (order of tightness of the *b*-tagging WPs)

- * Large background from *tt*+jets (>=1b,>=1c, light-flavour)
 - Nominal sample: @NLO 5-flavour scheme (with additional b-quark pair from PS)

36*fb*

- Division of CRs depending on the $t\bar{t}$ +jet flavour
- Numerous uncertainties are implemented to cover the modelling differences.

Use of **reconstruction/MVA** techniques (details next slide)

$t\bar{t}H(H\to b\bar{b})$

* Signal extraction strategy (MVA methods)

- ▶ Intermediate —> to reconstruct the $t\bar{t}H$ system
- Classification BDT —> to separate signal form background

Classification BDT

- Highest BDT score for H and t + BDT output
- Kinematic variables p^{sig}/p^{sig} + p^{tt̄+jets} (av. over jet permutations)

 $36fb^{-}$

$$\mathbb{P}MEM_d = log(L_S) - log(L_B)$$

▶b-tagging information

$t\bar{t}H(H \to b\bar{b})$

* Fit model

- ▶ Profile likelihood fit ($\mu_{t\bar{t}H}$) of 10 CRs and 9 SRs
- BDT bins in SRs
- H_T bins or single bin CRs
- ▶ Free floating norm. of $t\bar{t} + \ge 1b$ and $t\bar{t} + \ge 1c$

 $36 fb^{\prime}$

yield comparison

* Systematic uncertainties

- ▶ Modelling of $t\overline{t} + \ge 1b$ (±0.46)
- ▶ MC statistical (±0.30)
- ▶ Flavour tagging (± 0.16)
- Dominated by systematic uncertainties

- *** Target**: $t\bar{t}H$ with
 - ▶ H—>WW/ZZ/ $\tau\tau$ —> ≥ 1ℓ
 - ▶ $t\bar{t}$ —>(ℓ+jets, dilepton)
- * Analysis regions
 - **charge** and **flavour** of leptons $(\ell = e, \mu, \tau_{had})$
 - ▶ number of **jets**
 - CRs to constrain backgrounds
- * Main backgrounds : $t\bar{t}W, t\bar{t}Z, VV +$ non-prompt ℓ , charge mis-assigned ℓ , photon conversions ℓ (mainly $t\bar{t}$), fake τ_{had}

Sophisticated BDT isolation to suppress ℓ from semi-leptonic b-decays, QMisID BDT, material and γ^* conversion (CO) rejection ($m_{trk-trk}$)

Recent t*t***H** measurements with ATLAS | LHCP, 29 May 2020 | M.Nazlim Agaras

80*fb*

Analysis regions

- * "high NJets" (≥ 4) —> Multi-dim. BDT space, lepton charge, and/or lepton flavour
 - Consist of SRs & CRs
 - ▶ BDT vs $t\bar{t}W/t\bar{t}$ in $2\ell SS t\bar{t}W, t\bar{t}Z, VV, t\bar{t}$ in 3ℓ
- * "low NJets" (2-3) —> $\Delta R(l_0, l_1), H_T$, **b-jet** multiplicity, lepton flavour, event yeild
 - ${}^{\triangleright}$ discrimination power on $t\bar{t}W$ and non-prompt backgrounds

Estimation of lepton backgrounds based on MC shapes; <u>simultaneous</u> fit to signal strength

- Normalisations of
 - Heavy flavour non-prompt leptons b, $c \to \ell X$ (electrons and muons)
 - ▶ electrons from material CO $\gamma \rightarrow \ell \ell_{soft}$
 - ▶ electron from **internal CO** [low mass] $\gamma^* \rightarrow \ell \ell_{soft}$
- * Data-driven for the charge mis-assigned and fake τ_{had}

80*fb*

region in $2\ell SS$ - $e\mu\mu\mu$ channel

80*fb*⁻¹

- Normalisation of
 - ▶ \overline{ttW} (decorrelated between $2|SS0\tau$ low NJets, $2|SS0\tau$ high NJets, and $3|0\tau$)
- * Observed more $t\bar{t}W$ than expected
- * Scale Yellow Report 4 tt W cross section by
 1.21
 - * to account for NLO $t\bar{t}W$ +1 jet (qg initiated opened up)
 - * EWK effects of order $\alpha_{\rm s} \alpha^3$ (tW scattering NLO)
- Uncertainties to cover data/MC disagreements as a function of NbJets and lepton total charge in tt W phase space
 - Derived from the difference between data/MC
 - * Already has stimulated some theory work!

* Fit model

- Profile likelihood fit ($\mu_{t\bar{t}H}$) of 17 CRs and 8 SRs
- simultaneous fit to NFs & signal strength

* Systematic uncertainties

 Jet energy scale and resolution (±0.13)

🔶 Data

t t W

 $t\overline{t}(Z/\gamma^*)$ (high)

Dibosor

Non-pro

QMisID

Other

---- Pre-Fi

4€Zdep

4€Zenr

1827

- tītl modelling (±0.09)
- $t\bar{t}W$ modelling (±0.08)

Post-Fit

ATLAS Preliminary

√s = 13 TeV, 79.9 fb

2ºttH_

³CttH

bin

SRs

Events / I

10³

Data / Pred. 5.0 2.0

 $\mathcal{L}_{ht}\mathcal{L}_{Mat}\mathcal{L}_{t(\mu)}\mathcal$

Recent *ttH* **measurements with ATLAS** | *LHCP*, 29 May 2020 | *M.Nazlim Agaras*

3817

2017

tτ̄H (μ=0.58)

Non-prompt e

Mat Conv

// Uncertainty

Multi Non-promp

Fake τ_{had}

 $T = t\bar{t}\gamma^*(low)$

3etty 3ett> 3en

$t\bar{t}H(H \to \gamma\gamma)$

* Analysis regions

- Select two energetic and well isolated photons
- ▶ Hadronic (0ℓ, 4 NJets, leptonic (≥1ℓ, 3 NJets) regions
- all top decays are included
- * Backgrounds
 - ▶ non- $t\bar{t}H$ production, $t\bar{t}\gamma\gamma$, $t\bar{t} + jets$
 - Determination of continuum background is datadriven
 - Control samples to evaluate the function

* Defining **SRs**:

- BDTs —> Inputs: photon, jet kinematics
- Perform cut on BDT output to veto backgrounds and Categorise events passing

Significance: 4.9σ (4.2σ exp.) $\mu_{t\bar{t}H} = 1.38^{+0.41}_{-0.36}$

* Fit setup & unc.

- Signal extracted from fit to myy distributions; Double Sided Crystal Ball
- Results still statistically limited
- Experimental (mainly on photons and jets) and theoretical unc. (tt H) included

$t\bar{t}H(H \rightarrow ZZ^* \rightarrow 4l)$ Resonant

- * Searching Higgs Boson candidates $115 < m(4l) < 130 \, GeV$
- Background in mass sidebands
- * Analysis regions, based on $t\bar{t}$ decay
 - *t*t
 <u>+</u>Lep-enriched, event yield
 - $t\bar{t}H$ -Had-enriched, exploit NN
 - $t\bar{t}H$ vs. tXX(ttZ) vs. ggF
 - resulting 2 independent outputs, $NN_{t\bar{t}H} \& NN_{tXX}$ corresponding to the probability of the given process

 $\mu = 1.7^{+1.7}_{-1.2}(stat.) \pm 0.2(syst.) \pm 0.2(th.)$

139*fb*⁻

- * Largely statistically limited
- * Three candidates at ATLAS in full Run 2!

ttH Combination

* No combinations including all the latest results yet... but already 5σ observed!

Measurements consistent with Standard Model.

Conclusion

- * The latest studies related to $t\bar{t}H$ measurements are presented
- * ATLAS has established observation of $t\bar{t}H$ production by combining various Higgs decay channels
 - Results are compatible with SM
- * Some individual channels updated their results with more data
 - Almost **observation** for $t\bar{t}H$ production in $H \rightarrow \gamma\gamma$ channel alone
 - ▷ 3 events are observed in $t\bar{t}H(H \rightarrow ZZ^* \rightarrow 4l)$
- Challenging backgrounds
 - Requires better understanding of background processes eg. $t\bar{t}W, t\bar{t}b\bar{b}$
 - Improvements are expected with Full Run2 data
- * Full Run2 dataset will allow also new opportunities, including **differential** and **properties measurements**.

								• (

• •

The ratios of *S*/*B* and *S*/ \sqrt{B} for each analysis categories in $t\bar{t}H(bb)$

Single lepton + dilepton have similar purity; lower stats in dilepton

Boosted: two R=1.0 jets \rightarrow H candidate p_T > 200 GeV, 2 b-tagged subjets \rightarrow top candidate p_T > 250 GeV, one b-tagged subjet

* The ratios of S/B and S/\sqrt{B} for each analysis categories in $t\overline{t}H$ - multi lepton

Pre-fit impact on µ: Δμ $\theta = \hat{\theta} + \Delta \theta$ $\theta = \hat{\theta} - \Delta \theta$ -0.5 0 0.5 -1 1 Post-fit impact on µ: $\theta = \hat{\theta} + \Delta \hat{\theta} = \theta = \hat{\theta} - \Delta \hat{\theta}$ ATLAS √s = 13 TeV, 36.1 fb⁻¹ --- Nuis. Param. Pull tt+≥1b: SHERPA5F vs. nominal tt+≥1b: SHERPA4F vs. nominal tt+≥1b: PS & hadronization tt+≥1b: ISR / FSR ttH: PS & hadronization b-tagging: mis-tag (light) NP I k(tt+≥1b) = 1.24 ± 0.10 Jet energy resolution: NP I tTH: cross section (QCD scale) tt+≥1b: tt+≥3b normalization tt+≥1c: SHERPA5F vs. nominal tt+≥1b: shower recoil scheme tt+≥1c: ISR / FSR Jet energy resolution: NP II tt+light: PS & hadronization Wt: diagram subtr. vs. nominal b-tagging: efficiency NP I b-tagging: mis-tag (c) NP I E_{τ}^{miss} : soft-term resolution b-tagging: efficiency NP II -2 -1.5 -1 -0.5 0 0.5 1.5 1 $(\hat{\theta} - \theta_0) / \Delta \theta$

* Ranking of NPs in $t\bar{t}H(bb)$

020 M.Nazlim Agaras

2

• •

Process	Generator	ME order	Parton shower	PDF	Tune
tĪH	Powheg-BOX [23, 24]	NLO	Рутніа 8	NNPDF3.0 NLO [25]/	A14
				NNPDF2.3 LO [48]	
	(Powheg-BOX)	(NLO)	(Herwig7)	(NNPDF3.0 NLO/	(H7-UE-MMHT)
				MMHT2014 LO [49])	
tHqb	MG5_AMC	LO	Рутніа 8	CT10 [50]	A14
tHW	MG5_AMC	NLO	Herwig++	CT10/	UE-EE-5
				CTEQ6L1 [51, 52]	
tĪW	Sherpa 2.2.1	MePs@Nlo	Sherpa	NNPDF3.0 NNLO	SHERPA default
	(MG5_AMC)	(NLO)	(Рутніа 8)	(NNPDF3.0 NLO/	(A14)
				NNPDF2.3 LO)	
$t\bar{t}(Z/\gamma^*)$	MG5_AMC	NLO	Рутніа 8	NNPDF3.0 NLO/	A14
				NNPDF2.3 LO	
_	(Sherpa 2.2.0)	(LO multileg)	(Sherpa)	(NNPDF3.0 NLO)	(SHERPA default)
$t\bar{t} \rightarrow W^+ b W^- \bar{b} l^+ l^-$	MG5_AMC	LO	Рутніа 8	NNPDF3.0 LO	A14
tΖ	MG5_AMC	LO	Рутніа б	CTEQ6L1	Perugia2012
tWZ	MG5_AMC	NLO	Рутніа 8	NNPDF2.3 LO	A14
tīt, tītī	MG5_AMC	LO	Рутніа 8	NNPDF2.3 LO	A14
$t\bar{t}W^+W^-$	MG5_AMC	LO	Рутніа 8	NNPDF2.3 LO	A14
tī	Powheg-BOX	NLO	Рутніа 8	NNPDF3.0 NLO/	A14
				NNPDF2.3 LO	
Single top	Powheg-BOX [53-55]	NLO	Рутніа 8	NNPDF3.0 NLO/	A14
(t-, Wt-, s-channel)				NNPDF2.3 LO	
VV, qqVV, VVV	Sherpa 2.2.2	MEPs@Nlo	Sherpa	NNPDF3.0 NNLO	Sherpa default
$Z \rightarrow l^+ l^-$	Sherpa 2.2.1	MePs@Nlo	Sherpa	NNPDF3.0 NLO	Sherpa default

		e		μ				
	L	L*	Т	L	L*	Т		
FixedCutLoose	No		Yes	No	Y	'es		
Non-prompt lepton BDT	N	0	Yes	N	0	Yes		
Identification	Loo		Tight	Loc		ose		
Charge mis-assignment veto	N	0	Yes	N/A				
ambiguity bit $== 0$	N	0	Yes		N/A			
Transverse impact parameter significance		< .	5	< 3				
$ d_0 /\sigma_{d_0}$								
Longitudinal impact parameter	< 0.5 mm							
$ z_0 \sin \theta $								

L = Loose

L* = Loose + FixedCutLoose

T = Tight

	electron	muon
ID	TightLH && ambiguityType == 0	Medium
Isolation	FixedCutLoose && PLV < -0.7	FixedCutLoose && PLV < -0.5
conv. suppression	$\Delta R_{ll} > 0.5 \&\& \eta_e < 2.0$	
	!ExtCo && !IntCo	
QmisID MVA	> 0.7	
impact parameter	$ d0 /\sigma(d0) < 5$	$ d0 /\sigma(d0) < 3$
	$z_0 \sin \theta < 0.5 \text{ mm}$	$z_0 \sin \theta < 0.5 \text{ mm}$

- Material conversion candidates have a reconstructed displaced vertex with radius r > 20 mm that includes the track associated with the electron
 - The invariant mass of the associated track and the closest (in Δη) opposite-charge track reconstructed in the silicon detector, calculated at the conversion vertex, is required to be < 100 MeV.
- Internal conversion candidates are required to fail the requirements for material conversions, and the di-track invariant mass, this time calculated at the primary vertex, is also required to be < 100 MeV.
- Very tight electron candidates are tight electrons that fail the internal conversion and material conversion requirements, and have |η| < 2.
 - The latter requirement rejects a small fraction of electrons with a large charge misidentification rate because of the limited number of hits used in the track reconstruction.

Electrons Taus Muons Heavy flavour decays (b- Heavy flavour decays (b- Light, heavy jets decay) decay) (quarks,gluons) Conversions •In-flight decays of π/K Electrons Charge misidentification Non-prompt lepton Semileptonic Photon You prompt & fake τ Trident process b-decay conversions b fake ℓ+ b fake ℓ+ fake **T** w b b prompt *l*+ prompt *l*+ prompt *l*+ b ν ν Dedicated methods/control regions for each background source

- Heavy Flavour, photon conversions (internal(γ *)&material) —> Template Fit Method (semi data-driven)
- Charge misidentification —> 3D Likelihood (data-driven)
- ~ τ Fakes —> Fake factor (data-driven)

internal (γ* → e+e-) and material electron conversion (CO) candidates further suppressed with track invariant masses and conversion radius in the transverse plane
 electron CO

selection	CO radius	m _{track} -track						
(1) material CO	> 20 mm	< 100 MeV (wrt. CV)						
(2) internal CO	not (1)	< 100 MeV (wrt. PV)						
(3) very tight*	not (1) and not (2)							

*reduces conversions by ~50% at the cost of ~2% prompt electron efficiency

- A normalisation factor of 1.2 applied on top of the YR4 cross section for ttW
- Origin of the correction factor:
 - Factor 1.11 to account for missing QCD corrections in higher order XS
 - ttW+0j@NLO → ttW+0,1j@NLO
 - estimated using dedicated samples generated with Sherpa 2.2.1 using the MEPS@NLO prescription, and cross-checked with the NLO generator MadGraph5_aMC@NLO 2.2.1 using the FxFx prescription
 - Factor 1.09 to account for missing EW corrections
 - [1711.02116] shows "subleading" NLO EWK corrections, not included in YR4 XS, can be large ٠
 - primarily because of the large **NLO3 term** driven by the ttW+1-jet diagrams with a Higgs boson exchanged in the t-channel

- Recent modelling studies for QCD and EWK corrections in ttH-ML phase space
 - ▶ arXiv: 2005.09427v1
 - ▶ arXiv: 2004.09552v1

160

 $t\bar{t}H$ (µ=0.58) 11111

Pre-fit impact on μ : $\theta = \hat{\theta} - \Delta \theta$ $\theta = \hat{\theta} + \Delta \theta$ Post-fit impact on μ : $\Delta \mu$ $\theta = \hat{\theta} - \Delta \hat{\theta}$ $\theta = \hat{\theta} + \Delta \hat{\theta}$ -0.15-0.1-0.05 0 0.05 0.1 0.15 - Pull: $(\hat{\theta} - \theta_0) / \Delta \theta$ **ATLAS** Preliminary Norm. Factor √s = 13 TeV, 79.9 fb⁻¹ $t\bar{t}W$ norm. factor: 3ℓ channel Jet energy scale: η intercalib. NP I $t\bar{t}Z$ cross section: scale variations $t\bar{t}W$ modelling: scale variations $t\bar{t}W$ norm. factor: 2ℓ SS channel, 2-3 jets Fake τ_{had} bkg. stat: $1\ell 2\tau$ channel $t\bar{t}H$ cross section: scale variations Jet energy scale: pileup $t\bar{t}W$ modelling: charge extrapolation $t\bar{t}W$ norm. factor: 2ℓ SS channel, ≥ 4 jets Top rare decay cross-section Jet energy scale: flavour response $t\bar{t}H$ modelling: parton shower $t\bar{t}W$ modelling: alternative generator 4-top cross section 1.5 -1.5 -0.5 0 0.5 2 -2 -1 1

* Ranking of NPs in $t\bar{t}H$ - multi lepton

Expected Composition