Title

Modelling of the $t\bar{t}W$ process

Ioannis Tsinikos

Theoretical Particle Physics, Department of Astronomy and Theoretical Physics,

Lund University

29 May 2020

online - LHCP2020

Exp: arXiv:1711.02547, 1901.03584, 1907.11270, ATLAS-CONF-2019-045

Th: arXiv:1406.3262, 1711.02116, 1804.10017, 1907.04343, 2001.03031, 2004.09552, 2005.09427

Outline

Contents

- Introduction
 - $t\bar{t}V$ production at the LHC
 - Focus on t̄tW
- Production level
 - Complete NLO
 - Beyond NLO
 - Differential distributions
- Fiducial region
 - Final signatures
 - Off shell effects at the decay level (FO)
 - Parton shower
- Conclusions
- Additional slides

Outline

- No BSM signs at the LHC up to now
 - Need to understand the details
- Already measured at the LHC
 - ATLAS LHC13, 1901.03584

$$\sigma_{t\bar{t}W}=870\pm130_{
m stat}\pm140_{
m syst}$$
, $\sigma_{t\bar{t}Z}=950\pm80_{
m stat}\pm100_{
m syst}$ [fb]

- CMS LHC13, 1711.02547, 1907.11270

$$\sigma_{t\bar{t}W} = 770^{+120}_{-110}(\mathrm{stat})^{+130}_{-120}(\mathrm{syst}), \ \sigma_{t\bar{t}Z} = 950 \pm 50_{\mathrm{stat}} \pm 60_{\mathrm{syst}} \ [\mathrm{fb}]$$

- First measurements on differential distributions
 - Access to EW top quark couplings
 - EFT and BSM sensitive regimes
- Review of $t\bar{t}W$ modelling on the theoretical side

Introduction Production level Outline Fiducial region Conclusions Additional slides Focus on $t\bar{t}W$

Main features of $t\bar{t}W$ Production modes

@LO: only
$$q\bar{q}$$

@NNLO: +gg

2000000

New channels, large Kfactors, large scale unc. Absence of gg even at NLO

Maltoni et	al.: 1406.3262
$t\bar{t}W^+$	13 TeV

qg

15 %

Process properties

QLO: Polarised $t, \bar{t} \rightarrow \text{Huge asymmetries in decay products}$

ONLO: Large $A_C^{t\bar{t}}$ (Absence of gg)

- Main irreducible background to signatures like $t\bar{t}H$, $t\bar{t}t\bar{t}$
- Data tend to give larger cross section w.r.t. theory prediction

Ioannis Tsinikos Modelling of the $t\bar{t}W$ process 4 / 14

NLO+N

Outline

NLO+NNLL Broggio et al.: 1907.04343, Kulesza et al.: 2001.03031

- Soft-gluon resummation to all orders
- \bullet Gluon-induced channels absent at LO \rightarrow not considered in resummation
- ullet Scale dependence still large (combination of 5 different scales $^{2001.03031}$)

- Reminder: $\sigma_{t\bar{t}W}^{\rm ATLAS} = 870 \pm 130_{\rm stat} \pm 140_{\rm syst}$ fb, $\sigma_{t\bar{t}W}^{\rm CMS} = 770_{-110}^{+120} ({\rm stat})_{-120}^{+130} ({\rm syst})$
- Agreement given the large uncertainties

loannis Tsinikos Modelling of the $t\bar{t}W$ process 6 / 14

Differential distributions

lacktriangle EW corrections already large at cross section o significant at differential level

- Left: Importance of complete NLO, jet veto effects
- Right: Slight scale reduction at NLO+NNLL, shaped EW corrections

- $t\bar{t}W \rightarrow \text{leptons} + \text{jets} + \overline{\cancel{E}_T}$ (2ss ℓ , 3 ℓ , 4 ℓ , ...)
- Spin correlations Realistic cuts Parton shower effects off shell effects
- Cannot keep the same precision very challenging calculationally
- Need to model the decay level (large background to $t\bar{t}H$ jet multiplicities)

Strategies:

× Global K-factors

• $NLO_{QCD}(t\bar{t}W)+PS$

- Fixed Order NLO_{QCD} $(t\bar{t}W o 2e1\mu \cancel{E}_T)$
- Parton shower

NLO $_{
m QCD+EW_{
m sub}}(tar{t}W)$ LOdecay(multileptons)

Bevilacqua et al.: 2005.09427

Off shell effects at the decay level (FO)

- 3 lepton signature: $pp \to e^+ \nu_e b \mu^- \bar{\nu}_\mu \bar{b} e^+ \nu_e$ (off-shell+non-resonant contributions+interferences)
- Double-, single-, non- resonant diagrams: $(\alpha_s^2 \alpha^6) + (\alpha_s^3 \alpha^6)$

• Cross sections [ab] ($\mu = H_T/3$, ATLAS-cuts)

$$t\bar{t}W^-$$
: NWA $_{
m LOdecay} = 72.0 {+11\% \atop -11\%}$, NWA= 68.7 ${+5\% \atop -7\%}$, full off-shell= 68.6 ${+5\% \atop -7\%}$

- NLO decays reduce scale unc.
- Off-shell effects do not alter significantly the cross section

Off shell effects at the decay level (FO)

Bevilacqua et al.: 2005.09427

Outline

Differential distributions

- Important effects of NLO decays even at bulk regions
- Large off-shell effects at the tails

Frederix, IT: 2004.09552

- Parton shower + Realistic analysis
- Include part of the EW corrections
 (NLO: the ones that can be obtained only by QCD corrections to any LO)

- \circ Cross section: check the $\sim 10\%$ of NLO3 in the fiducial region
- Differential level: check the jet multiplicities

 EW_{sub} + $NWA_{LOdecay}$ + PS + { had., cuts, Rivet, Detector }

Parton shower

Outline

Frederix, IT: arXiv:2004.09552

Cross section in multilepton signatures (2ss ℓ , 3 ℓ)

- Spin correlations (Already included in simulations)
 - Signature cuts affect the cross section

EW_{sub}

Agreement with the EW_{sub} effect to the inclusive cross section

g oooooo

Parton shower Frederix, IT: arXiv:2004.09552

Outline

redenz, 11. arXiv.2004.030

Differential distributions in multilepton signatures (2ss ℓ , 3 ℓ)

- ullet EW $_{
 m sub}$ structure
 - Extra parton
 - Extra source of radiation
 - Different kinematics
 - Different spin correlations
- Jet multiplicities (large effect at high n)

- Non flat *K*-factor
- Enhancement of the tails

Ioannis Tsinikos

Modelling of the $t\bar{t}W$ process

Summary - Further research

- Very active field: $t \bar{t} W$ modelling is continuously being improved
 - Production level: $NLO_{\rm QCD+EW} + NNLL$

$$- \ \, \mathsf{Decay} \,\, \mathsf{level} \,\, \left\{ \begin{array}{l} \mathsf{FO,} 3\ell \mathrm{:} \,\, \mathsf{NLO}_{\mathrm{QCD}} \,\, \mathsf{(off\text{-}shell \,\, effects)} \\ \\ \mathsf{PS:} \,\, \mathsf{NLO}_{\mathrm{QCD}} + \mathsf{EW}_{\mathrm{sub}} + \mathsf{PS} \,\, \mathsf{(jet \,\, multiplicities)} \end{array} \right.$$

- Further research:
 - Production level: NNLO (?)

$$- \text{ Decay level} \left\{ \begin{array}{l} \text{FO} \left[\begin{array}{c} (t\bar{t}W \to 2\ell 2b + \text{jets} + \cancel{\cancel{E}}_T) @\text{NLO}_{\text{QCD}} \text{: scale unc.} \\ \\ (t\bar{t}W \to 3\ell 2b + \cancel{\cancel{E}}_T) @\text{NLO}_{\text{EW}} \text{: EW}_{\text{corr}} @\text{decay} \end{array} \right. \\ \\ \text{PS} \left[\begin{array}{c} t\bar{t}W[+(2)j] @\text{NLO: } gg(@\text{NLO}), \text{ njets, } p_T(j), p_T(t\bar{t}) \\ \\ \text{Correct treatment of 'Weak'-jets (in progress...)} \end{array} \right. \end{array} \right.$$

Matching the EW corrections to PS

lacktriangle zoom: t ar t W-discussion-link, password: same as today's Webinars

Production

EW corrections:

Frederix, Pagani, Zaro: 1711.02116

$\sigma[\mathrm{fb}]$	$\mathrm{LO}_{\mathrm{QCD}}$	$\rm LO_{QCD} + NLO_{QCD}$	LO	LO + NLO	$\frac{\rm LO+NLO}{\rm LO_{QCD}+NLO_{QCD}}$
$\mu = H_T/2$	$363^{+24\%}_{-18\%}$	$544^{+11\%}_{-11\%} (456^{+5\%}_{-7\%})$	$366^{+23\%}_{-18\%}$	$577^{+11\%}_{-11\%} (476^{+5\%}_{-7\%})$	1.06 (1.04)

$\delta [\%]$	$\mu = H_T/4$	$\mu = H_T/2$	$\mu = H_T$
LO_2	-	-	-
LO_3	0.8	0.9	1.1
NLO_1	34.8 (7.0)	50.0 (25.7)	63.4 (42.0)
NLO_2	-4.4(-4.8)	-4.2(-4.6)	-4.0(-4.4)
NLO_3	11.9(8.9)	12.2(9.1)	12.5(9.3)
NLO_4	0.02(-0.02)	0.04(-0.02)	0.05(-0.01)

NLO+NNLL:

Large $A_C^{t\bar{t}}$ asymmetry: $A_C^{t\bar{t}}(t\bar{t}W^+) = 3.43(2)^{+6.2\%}_{-3.3\%}, A_C^{t\bar{t}}(t\bar{t}W^-) = 2.59(1)^{+6.0\%}_{-3.0\%}$

ttWq at LO

High $p_T(t\bar{t})$

- Hard jet
- Soft and collinear W

300 400

100 200

500 600 700 800

Decay - FO - Analysis Bevilacqua et al.: 2005.09427

ATLAS cuts:

$$p_T(\ell) > 25 \text{ GeV},$$
 $p_T(j_b) > 25 \text{ GeV},$ $|y(\ell)| < 2.5,$ $|y(j_b)| < 2.5,$ $\Delta R(\ell \ell) > 0.4,$ $\Delta R(\ell j_b) > 0.4,$

K-factors:

Decay - PS - Analysis

- $t\bar{t}W$ as background to $t\bar{t}H$ production
- Focus on 2ss ℓ and 3 ℓ signatures (ATLAS-CONF-2019-045)
- No misidentifications or lepton identification efficiencies

Channel	Selection criteria				
Common	$N_{\rm jets} \ge 2$ and $N_{b-\rm jets} \ge 1$				
2ℓSS	Two same-charge (SS) very tight (T*) leptons, $p_T > 20 \text{ GeV}$				
	No $\tau_{\rm had}$ candidates				
	$m(\ell^+\ell^-) > 12$ GeV for all SF pairs				
	13 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}$, mat. conv, int. conv.,				
	split by lepton flavour, charge, jet and b-jet multiplicity				
3ℓ	Three loose (L) leptons with $p_T > 10$ GeV; sum of light-lepton charges = ± 1				
	Two SS very tight (T*) leptons, $p_T > 15 \text{ GeV}$				
	One OS (w.r.t the SS pair) loose-isolated (L*) lepton, $p_T > 10 \text{ GeV}$				
	No $\tau_{\rm had}$ candidates				
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOS pairs				
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$				
	7 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, VV , $t\bar{t}$, mat. conv, int. conv				

Ioannis Tsinikos Modelling of the $t\bar{t}W$ process 18 / 14

Outline

Decay - PS - Analysis

\bullet $t\bar{t}W$ leptonic asymmetries

Decay - PS - Analysis

t\(\bar{t}\)W charge ratio

Jet multiplicity:	inclusive	0	1	2	3	4	5	6
no cuts	1.977(2)	2.88(4)	2.43(1)	2.218(7)	2.087(4)	2.003(3)	1.956(3)	1.916(3)
no cuts-no spin	1.977(1)	2.90(4)	2.45(1)	2.205(7)	2.087(5)	2.003(4)	1.956(3)	1.920(3)
$2ss\ell$	1.99(2)	-	-	2.30(3)	2.02(2)	1.96(2)	1.94(3)	1.84(4)
$2ss\ell$ -no spin	1.84(1)			1.90(3)	1.84(2)	1.84(2)	1.84(3)	1.72(4)
3ℓ	1.88(2)	-	-	1.89(3)	1.92(4)	1.81(5)	1.83(8)	1.8(1)
3ℓ -no spin	1.84(2)			1.81(3)	1.82(4)	1.86(5)	1.90(8)	1.9(1)

t̄t̄W@EW_{sub} leptonic asymmetries

Additional slides

Decay - PS - FxFx

Outline

Introduction

New ISR and FSR qg diagrams

- qg has significant contribution due to the gg absence up to NNLO
- In merging they are considered only above the merging scale
- Left (QCD jet): collinear factorization $t\bar{t}Wq' \sim t\bar{t}W \times P_{q'g}$
- Right (EW jet): regulated by m_W , no factorisation
- Finite contribution below μ_Q is lost
- Same effect but reduced is expected also in $t\bar{t}Z$, but not in $t\bar{t}H$