The use of the full set of input variables from the SMT algorithm and the output of the SMT multivariate in the training is set to 7% and that of light-flavoured jets to 93%. These values achieve a suitable balance.

The first high-level tagger is a BDT discriminant that combines the output of the low-level taggers.

Training Samples
- Using hybrid sample composed of SM $t\bar{t}$ and $Z \rightarrow q\bar{q}$ events
- More statistics in higher p_T region
- Undersampling approach applied to match p_T and m_T distributions for all 3 flavour categories
- Ensure independency of tagging from kinematics
- Using 23M jets for training

Deep Neural Network Architecture
- Deep neural network requires also
 - Preprocessing, feature selection...
 - Network with fully connected layers
 - Multi-class output \Rightarrow allows also c-tagging
 - $D_{L1 \text{b-tag}} = b$ ($z = (1 + P_{	ext{light-flavour}})$)
- Using Keras (2.2.4) framework with tensorflow backend
- Full training procedure relies on HDF5
- Application can be run in ATLAS reconstruction software, relying on the LWTNN C++ interface

Hyper Parameter (HP) Optimisation with GRID GPUs
- Using docker image (built by Gitlab CI) for jobs
- Configurable amount of HP combinations (config)
- Workflow optimised for GRID-submission
- 800 combinations over 5 HP dimensions
- Optimisation provides good results

Final Training Results
- Dedicated trainings of Particle-Flow jets and Variable Radius Track jets
 - New b-tagging recommendations for ATLAS
- Performance gain similar for Particle-Flow and Variable Radius Track jets
 - Gain in light-jet rejection higher than in c-jet rejection
 - Increase in performance up to 100% for light-jet rejection & up to 50% for c-jet rejection

Why b-Tagging?
- Several interesting physics processes have b-quarks in their final state
- Or a veto on b-quarks can suppress the background
- Heavy-flavour tagging important tool for physics analyses
- Precision measurements
- Search for new physics

Network Output
- Each jet gets probability for being a b, c, or light flavour jet
- Good separation of b- & light-jets
- b- & c-jets have more similar physics behaviour

Deep-learning Structure in ATLAS
- Baseline taggers deploy specific heavy flavour jet properties
 - Long lifetime (~ 1.9 ps \Rightarrow 3mm track in detector)
 - High mass (~ 5 GeV)
 - High decay product multiplicity
 - b-hadron decays to a c-hadron (V_{ub}/V_{cb})
- High-level taggers (MV2 & DL1) combine these information (40-50 variables)