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ALICE

One of the main goals of ultra-relativistic nuclear collisions is to create a new state of matter called quark-gluon plasma (QGP) and study
its properties. One of the experimental observables is anisotropic flow v,,, defined as correlation of azimuthal angle of each particle with
respect to a common symmetry plane ¥,,. The v,, and W¥,, represent the magnitude and angle of a complex flow vector V,,. Event-by-event
Huctuations in initial conditions and dynamics during expansion of the medium lead to fluctuations of the flow vector, as shown by

hydrodynamic calculations. We present measurements of the pp-dependent flow vector fluctuations using multi-particle correlations in
Pb—PDb collisions at /syny = 5.02 TeV recorded with the ALICE experiment in Run 2 at the LHC.

I. Motivation

e Hydrodynamic simulations show pp-dependent flow vector fluctuations in
Pb—Pb collisions

—Traditionally measured with 2-particle correlations.

— Novel 4-particle correlations allow us to separate effects of flow magnitude and flow
angle fluctuations.

e The magnitude of flow vector fluctuations is sensitive to both initial conditions and the
properties of the created QQGP = These measurements will help us better study the
dynamic evolution of the created QGP.

I1. Method

e Data is collected from the ALICE experiment.

e Data collected during Pb—Pb data taking in
2015. &

e The 2- and 4-particle correlations are all calcu- ‘& &
lated using the Generic Framework [1].
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Fig. 1: The ALICE detector at the LHC.
e The particles are selected from different pseudorapidity and pr-ranges
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Fig. 2: Hlustration of particle pr-selection and |An| gap method for multi-particle correlations

II1I. Flow vector fluctuations
e Ratio of v,{2} and v,|2] [2]:
(v (pt)oy” cos[n (W, (pt) — ¥y)])

U2}/ 0n[2] = (1)
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e Factorization ratio r, [3]:
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o [f flow vector fluctuations are present v,{2}/v,|2| < 1, r, < 1

r

e pp-dependent flow vector fluctuations observed in central collisions. This effect is also
indicated by hydrodynamic models although extension to higher pt is desirable.
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Fig. 4: v2{2} /v9[2] with |An| > 0.8 (Top) and ry with |An| > 0.8 and 0.2 < p < 0.6 GeV/c (Bottom) in Pb-Pb collisions at
Vsnn= 5.02 TeV. iEBE-VISHNU hydrodynamic calculations with TRENTo and AMPT initial conditions are shown with

colored bands.

IV. Flow Angle Fluctuations

e Probe of the flow angle fluctuation:

(cos[n(¢f + ¢5 — ¢5 — 1)) _ (vpvn, cos[2n(Wh" — \PZ%)D ~ (cos[2n (P — WPT)]) (3)

(cos[n(¢f + ¢} — ¢ — ¢%)]) (va2b?)

e Second equality holds if non-flow is the same.
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Fig. 5: (cos[4(W5" — WiT)]) in Pb-Pb collisions at 1/syy = 5.02 TeV with 0.2 < p% < 0.6 GeV/c.

e F'low angle decorrelation consistent with unity:.
= pr-dependent fluctuations of V5 mainly carried by flow magnitude fluctuations.

V. Flow Magnitude Fluctuations

e Normalized single-differential symmetric cumulant:

 un(pr®) — (o) (o)
B T N "

e pr-dependent NSC(3, 2,,,) and NSC(4,2,,.) observed in central collisions.
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Fig. 6: NSC(n, m,,.) in Pb-Pb collisions at /syy= 5.02 TeV. iIEBE-VISHNU hydrodynamic calculations with TRENTo and

AMPT initial conditions are shown in colored bands.

VI. Summary and Conclusions

e The two-particle correlation observables w2{2}/v9]2] and ry are measured in
Pb—-Pb collisions at /syn= 5.02 TeV.

= pr-dependent flow vector fluctuations are observed in central collisions.

e Four-particle correlation observables NSC(3,2,,.), NSC(4, 2,,) and <cos[4(\11120% — \Ifng)D
are measured i Pb—Pb collisions at |/syn= 95.02 TeV.
= The measurements indicate that pp-dependent flow vector fluctuation are mainly
driven by fluctuations in the flow magnitude.

e These new measurements help us understand the dynamic evolution of the created QGP
in high-energy heavy-ion collisions.
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