

PROBE *p*_T-dependent flow vector fluctuations with ALICE Emil Gorm Nielsen for the ALICE Collaboration University of Copenhagen, Denmark

One of the main goals of ultra-relativistic nuclear collisions is to create a new state of matter called quark-gluon plasma (QGP) and study its properties. One of the experimental observables is anisotropic flow v_n , defined as correlation of azimuthal angle of each particle with respect to a common symmetry plane Ψ_n . The v_n and Ψ_n represent the magnitude and angle of a complex flow vector V_n . Event-by-event fluctuations in initial conditions and dynamics during expansion of the medium lead to fluctuations of the flow vector, as shown by hydrodynamic calculations. We present measurements of the $p_{\rm T}$ -dependent flow vector fluctuations using multi-particle correlations in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded with the ALICE experiment in Run 2 at the LHC.

I. Motivation

- Hydrodynamic simulations show $p_{\rm T}$ -dependent flow vector fluctuations in Pb–Pb collisions
- -Traditionally measured with 2-particle correlations.
- -Novel 4-particle correlations allow us to separate effects of flow magnitude and flow

IV. Flow Angle Fluctuations • Probe of the flow angle fluctuation: $\frac{\langle \cos[n(\phi_1^a + \phi_2^a - \phi_3^b - \phi_4^b)] \rangle}{\langle \cos[n(\phi_1^a + \phi_2^b - \phi_3^a - \phi_4^b)] \rangle} = \frac{\langle v_n^{a2} v_n^{b^2} \cos[2n(\Psi_n^{p_T^a} - \Psi_n^{p_T^b})] \rangle}{\langle v_n^{a2} v_n^{b^2} \rangle} \approx \langle \cos[2n(\Psi_n^{p_T^a} - \Psi_n^{p_T^b})] \rangle$

angle fluctuations.

• The magnitude of flow vector fluctuations is sensitive to both initial conditions and the properties of the created QGP \Rightarrow These measurements will help us better study the dynamic evolution of the created QGP.

II. Method

- Data is collected from the ALICE experiment.
- Data collected during Pb–Pb data taking in 2015.
- The 2- and 4-particle correlations are all calculated using the Generic Framework [1].

• Ratio of $v_n\{2\}$ and $v_2[2]$ [2]:

4 TRD 5 TOF 6 HMPID 7 EMCAL **5 DIPOLE MAGN**

(1)

(2)

Fig. 1: The ALICE detector at the LHC.

• The particles are selected from different pseudorapidity and $p_{\rm T}$ -ranges

Fig. 2: Illustration of particle $p_{\rm T}$ -selection and $|\Delta \eta|$ gap method for multi-particle correlations

III. Flow vector fluctuations

• Second equality holds if non-flow is the same.

Fig. 5: $\langle \cos[4(\Psi_2^{p_T^a} - \Psi_2^{p_T^b})] \rangle$ in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with $0.2 < p_T^b < 0.6$ GeV/c.

• Flow angle decorrelation consistent with unity. $\Rightarrow p_{\rm T}$ -dependent fluctuations of V_2 mainly carried by flow magnitude fluctuations.

V. Flow Magnitude Fluctuations

• Normalized single-differential symmetric cumulant:

ALICE

$v_n\{2\}/v_n[2] = \frac{\langle v_n(p_T^a)v_n^{\text{ref}}\cos[n(\Psi_n(p_T^a) - \Psi_n)]\rangle}{\sqrt{\langle v_n(p_T^a)\rangle}\sqrt{\langle v_n^{\text{ref}^2}\rangle}}$ • Factorization ratio r_n [3]: $r_n = \frac{V_{n\Delta}(p_T^a, p_T^b)}{\sqrt{V_{n\Delta}(p_T^a, p_T^a)V_{n\Delta}(p_T^b, p_T^b)}}$ • If flow vector fluctuations are present $v_n\{2\}/v_n[2] < 1, r_n < 1$ • $p_{\rm T}$ -dependent flow vector fluctuations observed in central collisions. This effect is also indicated by hydrodynamic models although extension to higher $p_{\rm T}$ is desirable. v₂{2}/v₂[2 V0M: 0-5% Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ | η | < 0.8 • $v_2\{2, |\Delta \eta| > 0.8\}/v_2[2, |\Delta \eta| > 0.8]$ iEBE-VISHNU TRENTo-IC, η/s(T), ζ/s(T) AMPT-IC, η/s = 0.08 $v_2{2}v_2{2}v_2{2}$ V0M: 30-40% V0M: 40-50% V0M: 20-30%

$NSC(n, m_{p_T}) = \frac{\langle v_n^2 v_m(p_T)^2 \rangle - \langle v_n^2 \rangle \langle v_m(p_T)^2 \rangle}{\langle v_n^2 \rangle \langle v_m(p_T)^2 \rangle}$

• $p_{\rm T}$ -dependent NSC(3, $2_{p_{\rm T}}$) and NSC(4, $2_{p_{\rm T}}$) observed in central collisions.

VI. Summary and Conclusions

• The two-particle correlation observables $v_2\{2\}/v_2[2]$ and r_2 are measured in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. $\Rightarrow p_{\rm T}$ -dependent flow vector fluctuations are observed in central collisions.

Fig. 4: $v_2\{2\}/v_2[2]$ with $|\Delta \eta| > 0.8$ (Top) and r_2 with $|\Delta \eta| > 0.8$ and $0.2 < p_T^b < 0.6 \text{ GeV}/c$ (Bottom) in Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. iEBE-VISHNU hydrodynamic calculations with TRENTo and AMPT initial conditions are shown with colored bands.

- Four-particle correlation observables NSC(3, $2_{p_{\rm T}}$), NSC(4, $2_{p_{\rm T}}$) and $\langle \cos[4(\Psi_2^{p_T^a} \Psi_2^{p_T^o})] \rangle$ are measured in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
- \Rightarrow The measurements indicate that $p_{\rm T}$ -dependent flow vector fluctuation are mainly driven by fluctuations in the flow magnitude.
- These new measurements help us understand the dynamic evolution of the created QGP in high-energy heavy-ion collisions.

References

- A. Bilandzic et al. In: Phys. Rev. C89, no.6, 064904 (2014). [2] U. Heinz et al. In: Phys. Rev. C87, 034913 (2013). [3] F. Gardim *et al.* In: *Phys. Rev.* C 87, 031901(R) (2013).
- Acknowledgement: This work is supported by a research grant (00025462) from VILLUM FONDEN.

8th Edition of the Large Hadron Collider Physics Conference 2020 | Contact: emil.gorm.nielsen@cern.ch