Jet or Event? Physics at Future Lepton Colliders

Lingfeng Li (Hong Kong U. of Sci. & Tech.) with Tao Liu, Ying-Ying Li, Si-Jun Xu

Introduction

The precision frontier of next decades in Higgs and electroweak (EW) physics is expected to be defined by next-generation ee colliders. However, amongst EW/Higgs processes, the hadronic modes containing (anti-)quarks or/and gluons are dominant. Because of this, the measurement precisions will be limited by our definition of jets:

- Deformation from the truth in due to misclustering of particles in the overlapping region of fragmentation and hadronization inside detector
- Loss of information stem from dimension reduction

Example event with $ee-k_{t}$ algorithm. Info distortion makes jet momenta (coloured boxes) deviate from that of quarks (black circles/triangles).

Two ways to compensate the loss after jet clustering:

- Pursue jet-level analysis by properly incorporating subjet-scale or eventlevel observables
 - Simple framework. Physically intuitive
 - Less systematic ٠
- Address the information deformation/loss in jet clustering is to pursue the analysis in a brute-force way, using the event-level data as input.
 - Use the kinematic info at event level to the greatest extent ٠
 - Large complexity, Data structure: need machine learning(ML)

CMB-like Observable Scheme

Cumulative projections of 10⁴ events: z-axis being along beam and the most energetic particle rotated towards the center. A"halo" is formed due to the minimal included angle between the two ancestral quarks.

For jet-level ML, we use Fully Connected Network (FCN) and for event level we These observations are reminiscent of the all-sky CMB map where the message on the early Universe is encoded as its power spectrum and multiuse Convolutional Neural Network (CNN) to take the whole event as image: spectra. Quite generally, we can build up a dictionary between the Mollweide ◆ J1 :Jet momenta only. projection of each ee collision event and the all-sky CMB map: ◆ J2: Jet momenta, with FW moments with $I \le 50$

Jet-vs. Event-Level Information

Now the Fox-Wolfram moments^[2] as the leading order event-level input, analogous to the power spectra in CMB studies. There definition is

Example ROC and AUC for our benchmark study, comparing different ee->Zh final states. In general, the AUC of J1 < J2 < J3 and E1 <E2 holds.

LHCP2020

- J3: Jet momenta, with FW moments and track info
- E1: Event Image(50×50), without track information.
- E2: Event Image(50×50), with track information

It is noticeable that the AUC gap between J1 and E1 classifiers is not fully addressed by FW moments in most cases->multi-spectra?

Precisions of Higgs Width Measurement

We apply ML classifiers to measuring the SM $\Gamma_{\rm b}$, one of the most important tasks at future ee colliders, with the data of 5ab⁻¹@240GeV using:

 $\Gamma_h = \frac{\Gamma(h \to WW^*)}{\mathrm{BR}(h \to WW^*)} \propto \frac{\sigma(\nu\nu h)}{\mathrm{BR}(h \to WW^*)} = \frac{[\sigma(\nu\nu h_h)]^2 [\sigma(Zh)]^2}{[\sigma(\nu\nu h_W)] [\sigma(Zh_h)]^2}$

Using all 5 ML models, expected precisions of measuring $\Gamma_{\rm b}$

Precision (%)	J1	J2	J3	E1	E2
$\sigma(Z_{\nu}h_{W_{lq}})$	1.7(1.6)	1.4(1.6)	1.5(1.6)	1.5(1.4)	1.5(1.4)
$\sigma(Z_{\nu}h_{W_{qq}})$	1.6(1.6)	1.2(1.2)	1.1(1.1)	1.1 (1.1)	$1.1 \ (1.1)$
$\sigma(u u h_h)$	2.8(2.7)	1.8(1.7)	1.9(1.8)	1.4(1.4)	1.3(1.3)
Γ_h	$3.2^{+0.9}_{-0.3}$ (3.1)	$2.3^{+0.7}_{-0.2}$ (2.2)	$2.3^{+0.7}_{-0.2}$ (2.3)	$1.9^{+0.5}_{-0.1}$ (1.9)	$1.9^{+0.4}_{-0.1}$ (1.9)

The best outcome of 1.9% improves the baseline precisions, i.e., ~3.5% at both $CEPC_{240}^{[3]}$ and $FCC_{240}^{[4]}$, by a factor about 1.8.

Conclusion

The event-level classifiers perform better compared to the jet-level ones; but, incorporating the FW moments into the jet-level classifiers can significantly reduce the performance gap between them. As an application of such classifiers, we analyzed the precision of measuring the SM $\Gamma_{\rm h}$ at ee colliders with the data of 5ab⁻¹@240GeV. The precisions obtained are significantly better than the baseline ones.

References

- [1] Li, L., Li, Y.-Y., Liu, T., and Xu, S.-J., 2004.15013
- [2] G. C. Fox and S. Wolfram, Phys. Rev. Lett., vol. 41, p. 1581, 1978
- [3] F. An et al., Chin. Phys., vol. C43, no. 4, p. 043002, 2019, 1810.09037
- [4] A. Abada et al., Eur. Phys. J., vol. C79, no. 6, p. 474, 2019