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Motivation:

Figure: Jupiter great red spot (10−4s−1) and Nanodroplets of superfluid helium
(107s−1)

.
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Motivation:

Non-central relativistic heavy ion collisions creates global rotation of
matter. This may induce spin polarization reminding us of Einstein
and De-Haas effect and Barnett effect.
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Figure: Einstein-De Haas Effect
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Figure: Barnett Effect
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Motivation:

Non-central relativistic heavy ion collisions creates global rotation of
matter. This may induce spin polarization reminding us of Barnett
effect and Einstein and de-Haas effect.

Emerging particles are expected to be globally polarized with their
spins on average pointing along the systems angular momentum.

Figure: Schematic view of non-central heavy-ion collisions.

Source: CERN Courier
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Other works:

Other theoretical models used for the heavy-ions data interpretation dealt
mainly with the spin polarization of particles at freeze-out, where the basic
hydrodynamic quantity giving rise to spin polarization is the ‘thermal
vorticity’ expressed as $µν = − 1

2 (∂µβν − ∂νβµ).

F. Becattini et.al.(Annals Phys. 338 (2013)), F. Becattini, L. Csernai, D. J. Wang (PRC 88, 034905), F. Becattini

et.al.(PRC 95, 054902), Iu. Karpenko, F. Becattini (EPJC (2017) 77: 213), F. Becattini, Iu. Karpenko(PRL 120,

012302 (2018))
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Our hydrodynamic framework:

Solving the standard perfect-fluid hydrodynamic equations without
spin
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Our hydrodynamic framework:

Solving the standard perfect-fluid hydrodynamic equations without
spin

Determination of the spin evolution in the hydrodynamic background

Determination of the Pauli-Lubanski (PL) vector on the freeze-out
hypersurface
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Our hydrodynamic framework:

Solving the standard perfect-fluid hydrodynamic equations without
spin.

Determination of the spin evolution in the hydrodynamic background.

Determination of the Pauli-Lubański (PL) vector on the freeze-out
hypersurface.

Calculation of the spin polarization of particles in their rest frame.
The spin polarization obtained is a function of the three-momenta of
particles and can be directly compared with the experiment.
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Our hydrodynamic framework:

In this work, we use relativistic hydrodynamic equations for polarized spin
1/2 particles to determine the space-time evolution of the spin polarization
in the system using forms of the energy-momentum and spin tensors
proposed by de Groot, van Leeuwen, and van Weert (GLW).

S. R. De Groot,Relativistic Kinetic Theory. Principles and Applications (1980).
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Our hydrodynamic framework:

In this work, we use relativistic hydrodynamic equations for polarized spin
1/2 particles to determine the space-time evolution of the spin polarization
in the system using forms of the energy-momentum and spin tensors
proposed by de Groot, van Leeuwen, and van Weert (GLW).
S. R. De Groot,Relativistic Kinetic Theory. Principles and Applications (1980).

The calculations are done in a boost-invariant and transversely homogeneous
setup. We show how the formalism of hydrodynamics with spin can be used
to determine physical observables related to the spin polarization required
for the modelling of the experimental data.

Wojciech Florkowski et.al.(Phys. Rev. C 99, 044910), Wojciech Florkowski et.al.(Phys. Rev. C 97, 041901), Wojciech

Florkowski et.al.(Phys. Rev. D 97, 116017).
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Our hydrodynamic framework:

In this work, we use relativistic hydrodynamic equations for polarized spin
1/2 particles to determine the space-time evolution of the spin polarization
in the system using forms of the energy-momentum and spin tensors
proposed by de Groot, van Leeuwen, and van Weert (GLW).
S. R. De Groot,Relativistic Kinetic Theory. Principles and Applications (1980).

The calculations are done in a boost-invariant and transversely homogeneous
setup. We show how the formalism of hydrodynamics with spin can be used
to determine physical observables related to the spin polarization required
for the modelling of the experimental data.
Wojciech Florkowski et.al.(Phys. Rev. C 99, 044910), Wojciech Florkowski et.al.(Phys. Rev. C 97, 041901), Wojciech

Florkowski et.al.(Phys. Rev. D 97, 116017).

Our hydrodynamic formulation does not allow for arbitrary large values of

the spin polarization tensor, hence we have restricted ourselves to the

leading order terms in the ωµν .
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Spin polarization tensor:

The spin polarization tensor ωµν is anti-symmetric and can be defined by
the four-vectors κµ and ωµ,

ωµν = κµUν − κνUµ + εµναβU
αωβ,

Note that, any part of the 4-vectors κµ and ωµ which is parallel to Uµ
does not contribute, therefore κµ and ωµ satisfy the following
orthogonality conditions:

κ · U = 0, ω · U = 0

We can express κµ and ωµ in terms of ωµν , namely

κµ = ωµαU
α, ωµ = 1

2εµαβγω
αβUγ
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Conservation of charge:

∂αN
α(x) = 0,

where, Nα = nUα, n = 4 sinh(ξ) n(0)(T ).

The quantity n(0)(T ) defines the number density of spinless and neutral
massive Boltzmann particles,

n(0)(T ) = 〈p · U〉0 = 1
2π2 T

3 m̂2K2 (m̂)

where, 〈 · · · 〉0 ≡
∫
dP (· · · ) e−β·p denotes the thermal average,

m̂ ≡ m/T denotes the ratio of the particle mass (m) and the temperature
(T ), and K2 (m̂) denotes the modified Bessel function.

The factor, 4 sinh(ξ) = 2
(
eξ − e−ξ

)
accounts for spin degeneracy and

presence of both particles and antiparticles in the system and the variable
ξ denotes the ratio of the baryon chemical potential µ and the
temperature T , ξ = µ/T .
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Conservation of energy and linear momentum:

∂αT
αβ
GLW (x) = 0

where the energy-momentum tensor Tαβ
GLW has the perfect-fluid form:

Tαβ
GLW (x) = (ε+ P)UαUβ − Pgαβ

with energy density ε = 4 cosh(ξ)ε(0)(T ) and pressure
P = 4 cosh(ξ)P(0)(T )
The auxiliary quantities are:
ε(0)(T ) = 〈(p · U)2〉0 and P(0)(T ) = −(1/3)〈p · p − (p · U)2〉0
are the energy density and pressure of the spin-less ideal gas respectively.
In case of ideal relativistic gas of classical massive particles,

ε(0)(T ) = 1
2π2 T

4 m̂2
[
3K2 (m̂) + m̂K1 (m̂)

]
, P(0)(T ) = Tn(0)(T )

Above conservation laws provide closed system of five equations for five
unknown functions: ξ, T , and three independent components of Uµ.
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Conservation of total angular momentum:

∂µJ
µ,αβ(x) = 0, Jµ,αβ(x) = −Jµ,βα(x)

Total angular momentum consists of orbital and spin parts:

Jµ,αβ(x) = Lµ,αβ(x) + Sµ,αβ(x),

Lµ,αβ(x) = xαTµβ(x)− xβTµα(x)

Since the energy-momentum tensor is symmetric, the conservation of the
angular momentum implies the conservation of its spin part.

∂λJ
λ,µν(x) = 0, ∂µT

µν(x) = 0 =⇒ ∂λS
λ,µν(x) = T νµ(x)− Tµν(x)

Hence, the spin tensor Sµ,αβ(x) is separately conserved in GLW
formulation.
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Conservation of spin angular momentum:

∂αS
α,βγ
GLW (x) = 0

GLW spin tensor in the leading order of ωµν is:

Sα,βγGLW = cosh(ξ)
(
n(0)(T )Uαωβγ + Sα,βγ∆GLW

)
Here, ωβγ is known as spin polarization tensor, whereas the auxiliary
tensor Sα,βγ∆GLW is:

Sα,βγ∆GLW = A(0)U
αUδU [βω

γ]
δ

+B(0)

(
U [β∆αδω

γ]
δ + Uα∆δ[βω

γ]
δ + Uδ∆α[βω

γ]
δ

)
,

with,

B(0) = − 2
m̂2 s(0)(T )

A(0) = −3B(0) + 2n(0)(T )
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Basis for boost invariant and transversely homogeneous
systems:

For our calculations, it is useful to introduce a local basis consisting of
following 4-vectors,

Uα =
1

τ
(t, 0, 0, z) = (cosh(η), 0, 0, sinh(η)) ,

Xα = (0, 1, 0, 0) ,

Y α = (0, 0, 1, 0) ,

Zα =
1

τ
(z , 0, 0, t) = (sinh(η), 0, 0, cosh(η)) .

where, τ =
√
t2 − z2 is the longitudinal proper time and

η = ln((t + z)/(t − z))/2 is the space-time rapidity.
The basis vectors satisfy the following normalization and orthogonal conditions:

U · U = 1

X · X = Y · Y = Z · Z = −1,

X · U = Y · U = Z · U = 0,

X · Y = Y · Z = Z · X = 0.
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Boost-invariant form for the spin polarization tensor:

We use the following decomposition of the vectors κµ and ωµ,

κα = CκUU
α + CκXX

α + CκYY
α + CκZZ

α,

ωα = CωUU
α + CωXX

α + CωYY
α + CωZZ

α.

Here the scalar coefficients are functions of the proper time (τ) only due to boost
invariance. Since κ · U = 0, ω · U = 0, therefore

κα = CκXX
α + CκYY

α + CκZZ
α,

ωα = CωXX
α + CωYY

α + CωZZ
α.

ωµν = κµUν − κνUµ + εµναβU
αωβ can be written as,

ωµν = CκZ (ZµUν − ZνUµ) + CκX (XµUν − XνUµ) + CκY (YµUν − YνUµ)

+ εµναβU
α(CωZZ

β + CωXX
β + CωYY

β)

In the plane z = 0 we find:

ωµν =


0 CκX CκY CκZ

−CκX 0 −CωZ CωY
−CκY CωZ 0 −CωX
−CκZ −CωY CωX 0
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Boost-Invariant form of fluid dynamics with spin:

Conservation law of charge can be written as:

Uα∂αn + n∂αU
α = 0

Therefore, for Bjorken type of flow we can write,

ṅ + n
τ = 0

Conservation law of energy-momentum can be written as:

Uα∂αε+ (ε+ P)∂αU
α = 0

Hence for the Bjorken flow,

ε̇+ (ε+P)
τ = 0
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Boost-Invariant form of fluid dynamics with spin:

Using the equations,
Sα,βγ∆GLW = A(0)U

αUδU [βω
γ]
δ

+B(0)

(
U [β∆αδω

γ]
δ + Uα∆δ[βω

γ]
δ + Uδ∆α[βω

γ]
δ

)
,

and
Sα,βγGLW = cosh(ξ)

(
n(0)(T )Uαωβγ + Sα,βγ∆GLW

)
in

∂αS
α,βγ
GLW (x) = 0

Contracting the final equation with UβXγ ,UβYγ ,UβZγ ,YβZγ ,XβZγ and XβYγ .
L(τ) 0 0 0 0 0

0 L(τ) 0 0 0 0
0 0 L(τ) 0 0 0
0 0 0 P(τ) 0 0
0 0 0 0 P(τ) 0
0 0 0 0 0 P(τ)





ĊκX
ĊκY
ĊκZ
ĊωX
ĊωY
ĊωZ

 =


Q1(τ) 0 0 0 0 0

0 Q1(τ) 0 0 0 0
0 0 Q2(τ) 0 0 0
0 0 0 R1(τ) 0 0
0 0 0 0 R1(τ) 0
0 0 0 0 0 R2(τ)




CκX
CκY
CκZ
CωX
CωY
CωZ

 ,

A1 = cosh(ξ)
(
n(0) − B(0)

)
,

A2 = cosh(ξ)
(
A(0) − 3B(0)

)
,

A3 = cosh(ξ)B(0)

where,
L(τ) = A1 − 1

2
A2 −A3,

P(τ) = A1,

Q1(τ) = −
[
L̇ + 1

τ

(
L + 1

2
A3

)]
,

Q2(τ) = −
(
L̇ + L

τ

)
,

R1(τ) = −
[
Ṗ + 1

τ

(
P − 1

2
A3

)]
,

R2(τ) = −
(
Ṗ + P

τ

)
.
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Background evolution:

Initial baryon chemical potential µ0 = 800 MeV
Initial temperature T0 = 155 MeV
Particle (Lambda hyperon) mass m = 1116 MeV

Initial and final proper time is τ0 = 1 fm and τf = 10 fm, respectively.

μT0/Tμ0

T/T0

2 4 6 8 10
0

1

2

3

4

5

τ [fm]

μ
T
0
/T
μ
0
,T

/T
0

Figure: Proper-time dependence of T divided by its initial value T0 (solid line)
and the ratio of baryon chemical potential µ and temperature T re-scaled by the
initial ratio µ0/T0 (dotted line) for a boost-invariant one-dimensional expansion.

Rajeev Singh (IFJ PAN) Hydrodynamics with Spin 26 / 35



Spin polarization evolution:

CκX

CκZ

CωX

CωZ

2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

τ [fm]

C
κ
X
,C

κ
Z
,C

ω
X
,C

ω
Z

Figure: Proper-time dependence of the coefficients CκX , CκZ , CωX and CωZ . The
coefficients CκY and CωY satisfy the same differential equations as the
coefficients CκX and CωX .
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Spin polarization of particles at the freeze-out:

Average spin polarization per particle 〈πµ(p)〉 is given as:

〈πµ〉 =
Ep

dΠµ(p)
d3p

Ep
dN (p)
d3p

where, the total value of the Pauli-Lubański vector for particles with momentum
p is:

Ep
dΠµ(p)

d3p
= −cosh(ξ)

(2π)3m

∫
∆Σλp

λ e−β·p ω̃µβp
β

momentum density of all particles is given by:

Ep
dN (p)

d3p
=

4 cosh(ξ)

(2π)3

∫
∆Σλp

λ e−β·p

and freeze-out hypersurface is defined as:

∆Σλ = Uλdxdy τdη

Assuming that freeze-out takes place at a constant value of τ and parameterizing
the particle four-momentum pλ in terms of the transverse mass mT and rapidity
yp, we get:

∆Σλp
λ = mT cosh (yp − η) dxdy τdη
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Boost to the local rest frame (LRF) of the particle:

Polarization vector 〈π?µ〉 in the local rest frame of the particle can be obtained by
using the canonical boost. Using the parametrizations Ep = mT cosh(yp) and
pz = mT sinh(yp) and applying the appropriate Lorentz transformation we get,

〈π?µ〉 = −
1

8m



0

(
sinh(yp )px

mT cosh(yp )+m

) [
χ
(
CκX py − CκY px

)
+ 2CωZmT

]
+
χ px cosh(yp )(CωX px +CωY py )

mT cosh(yp )+m
+2CκZ py−χCωXmT

(
sinh(yp )py

mT cosh(yp )+m

) [
χ
(
CκX py − CκY px

)
+ 2CωZmT

]
+
χ py cosh(yp )(CωX px +CωY py )

mT cosh(yp )+m
−2CκZ px−χCωY mT

−
(

m cosh(yp )+mT

mT cosh(yp )+m

) [
χ
(
CκX py − CκY px

)
+ 2CωZmT

]
− χ m sinh(yp )(CωX px +CωY py )

mT cosh(yp )+m



where,
χ (m̂T ) = (K0 (m̂T ) + K2 (m̂T )) /K1 (m̂T ),

m̂T = mT/T
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Momentum dependence of polarization:
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Figure: Components of the PRF mean polarization three-vector of Λ’s. The

results obtained with the initial conditions µ0 = 800 MeV, T0 = 155 MeV,

Cκ,0 = (0, 0, 0), and Cω,0 = (0, 0.1, 0) for yp = 0.
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Summary:
We have discussed relativistic hydrodynamics with spin based on the GLW
formulation of energy-momentum and spin tensors.
For boost invariant and transversely homogeneous set-up we show how our
hydrodynamic framework with spin can be used to determine the spin
polarization observables measured in heavy ion collisions.

Since we worked with 0+1 dimensional expansion, our results cannot be

compared with the experimental data. So we have to extend our

hydrodynamic approach for 1+3 dimensions and interpret the experimental

data correctly.

Rajeev Singh (IFJ PAN) Hydrodynamics with Spin 31 / 35



Grazie per l’attenzione!

Thank you for your attention!
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Back-Up Slides
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Measuring polarization in experiment:

Source: T. Niida, WWND 2019
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Figure: Schematic view of STAR Detector
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