ATLAS Liquid Argon Calorimeter Commissioning for LHC Run-3 ## ATLAS Liquid Argon Calorimeters - Sampling calorimeter using liquid argon as active material - Electromagnetic calorimeters in barrel and endcap regions have accordion-like structures with absorber lead plates enabling a full azimuthal coverage. - Hadronic endcap calorimeter has a conventional parallel plate design using copper plates. - Forward calorimeter has a paraxial electrode structure with copper and tungsten as absorber material. Front-End Board ### Phase-I Upgrade - Level-1 trigger readout system is being upgraded to replace old *trigger towers* with *supercells* (with finer granularity) in order to improve object discrimination capability at trigger level. - This allows to keep the trigger p_T thresholds at the same level, even with future increases in luminosity. #### LSB (Layer Sum Board) to produce finer cell signal sums every readout board needs to be taken out of the cavern and refurbished #### New Baseplanes - allocates new slots for LTDBs - routes supercell signals - routes signal sums such that legacy trigger path is kept operational #### LTDB (LAr Trigger Digitizer Board) digitize analog signals and send to back-end digital processors Controller Board form layer sums similar to those in Run 2 and send to legacy readout, leaving this readout system unaffected # Tower Builder Board [TBB] Trigger Tower Sum and Drivers Exa; S(t-T;) Trigger Digitizer Board (LTDB) LAT Digital Processing System (LDPS) Output FPGA LDPS (LAr Digital Processing System) - receive digital signals from front-end - calculate supercell E_T and identify bunch crossing ID of the signal - send this information to the Level-1 Calo Trigger system at 40 MHz # Installation and Commissioning Status - The production of LSBs, baseplanes and boards for LDPS is complete. For LTDBs the production is on hold due to lab closures. - Baseplane replacement and refurbishment of FEBs with new LSBs were progressing well before CERN closure. These tasks have resumed recently. - 33 LTDBs are received and installed. - 4 LDPS units have been installed. Commissioning of newly refurbished crates: - Main Readout: Readout boards refurbished with new LSBs are tested through measurement of calibration parameters and coherent noise values. - Legacy Trigger Readout: This is tested to ensure it maintains its functionality since it will be kept operational until at least 2022. These tests are done by taking Level-1 Calo gain and timing scans of trigger towers. - New Trigger Readout: The digital sums produced by new front-end and back-end boards are read and processed to calculate the energy and timing of calibration pulses. - ★ There are significant ongoing efforts towards testing and validating the readout paths of newly refurbished crates. - ★ Despite the pause in installation due to COVID-19 lockdown, the opportunity was used for improving online tools and remote testing of the system.